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PREFACE.

PROGRESS
in education is one of the most striking characteris-

tics of this remarkable age. Never before was there so general

an interest in the education of the people. The development of

the intellectual resources of the nation has become an object of

transcendent interest. Schools of all kinds and grades are multi-

plying in every section of the country ; improved methods of train-

ing have been adopted ;
dull routine has given way to a healthy

intellectual activity ;
instructipqi has become a science and teach-

ing a profession. Mh" f^^^v
This advance is reflecffid in, anc^'^i^w

certain extent, has been

pioneered by, the improiyjienta^in th^^^^ods of teaching arith-

metic. Fifty years ago, aiijBpme^ was tf?Mlk as a mere collection

of rules to be committedYtVrknVnCar and
'i^iUied mechanically to

the solution of problems. vJ»{f636oa^for ag operation were given,

none were required ;
and

it^yg^^the privilj^elof only the favored

few^ even to realize that the^^^ any thTJbjfnt in the processes.

Amidst this darkness a star aroseS*5fciBBSi*!ast ; that star was the

mental ai'ithmetic of Warren Colburn. It caught the eyes of a few

of the wise men of the schools, and led them to the adoption of

methods of teaching that have lifted the mind from the slavery of

dull routine to the freedom of independent thought. Through the

influence of this little book, arithmetic was transformed from a dry

collection of mechanical processes into a subject full of life and in-

terest. The spirit of analysis, suggested and developed in it, runs

to-day like a golden thread through the whole science, giving sim-

plicity and beauty to all its various parts.

(iii)
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No one who did not in his earUer years learn arithmetic

by the old mechanical methods, and who has not experienced

the transition to the new analytic ones, can realize the com-

pleteness of the revolution effected by this little work. But great

as has been its influence, it should be remembered that it does

not contain all that is essential to the science of numbers. Analysis

in its mission, has done all that it was possible for it to accomplish,

but it is not sufficient for the perfection of a science. There must be

synthetic thought to build up, as well as analytic thought to separate

and simplify. Comparison and generalization have an important

work to perform in unfolding the relations of the various parts and

in uniting them by the logical ties of thought, which should bind

them together into an organic unity. What we now need for the

perfection of the science of arithmetic and our methods of teaching

it, is a more philosophical conception of its nature, and a logical

relating of its parts which analysis leaves in a disconnected condition.

It is worthy of remark that arithmetic,in respect to logical symme-

try and completeness, differs widely from its sister branch—geom-

etry. The science of geometry came from the Greek mind almost as

perfect as Minerva from the head of Jove. Beginning with definite

ideas and self-evident truths, it traces its way, by the processes of

deduction, to the profoundest theorem. For clearness of thought,

closeness of reasoning, and exactness of truths, it is a model of excel-

lence and beauty. It stands as a type of all that is best in the classi-

cal culture of the thoughtful mind of Greece. Geometry is the per-

fection of logic ;
Euclid is as classic as Homer.

The science of numbers, originating at the same time, seems to

have presented less attractions or greater difficulties to the Greek

mind. It is true that the great thinkers grew enthusiastic in the

contemplafion of numbers, and spent much time in fanciful specu-

lations upon their properties, but this did comparatively little for

the development of the science. The present system of arithmetic

is mainly the product of the thought of the past three or four cen-

turies. Developed by minds less logical than those of the old
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Greeks, and growing partly out of the necessities of business, it

seems not to have acquired that scientific exactness and finish

which belong to the science of geometry. Tlaat it has intrinsically

as logical a basis and will admit of as logical a treatment, cannot

be doubted. To endeavor to exhibit the true nature of the science,

show the logical relation of its parts, and thus aid in placing it

upon a logical foundation beside its sister branch, geometry, is the

object of the present treatise.

Tlie work is divided into five parts, besides the Introduction.

The Introduction contains a Logical Outline of Arithmetic, and a

brief History of the science, including an account of the Origin of

the Arabic system, the Origin of the Fundamental Operations, and

an account of the Early Writers on the science. The facts pre-

sented have been gathered from a variety of sources, and have

been carefully compared, so far as was possible, with the originals,

to secure entire accuracy in the statements. The principal author-

ities followed are Leslie, Peacock, and De Morgan. As much is

presented as it is supposed will be of interest to the teacher or gen-

eral reader; any who desire more detailed information are referred

to the writers mentioned.

Part First treats of the general nature of arithmetic, embracing

the Nature of Number, the Nature of Arithmelival Language, and the

Nature of Arithmetical Reasoning. The natu»<e of Number is quite

fully considered, especially in its relation to the idea of Time.

Various definitions of Number are presented and examined, and

the effort is made to ascertain that which may be regarded as the

best for general use.

The Nature of the Language of Arithmetic is discussed upon a

broader basis than usual. The true relation of Numeration to

Notation, which seems to have been overlooked by many authors,

and which is frequently not understood by pupils, is explained.

It is shown that Numeration is merely the oral and Notation the lorit-

ten language of Arithmetic. The philosophy of the Arabic system

of notation, the objections to the decimal scale, and the advantages

of a duodecimal system of arithmetic, are discussed.
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No one who did not in his earlier years learn arithmetic

by the old mechanical methods, and who has not experienced

the transition to the new analytic ones, can realize the com-

pleteness of the revolution eflfected by this little work. But great

as has been its influence, it should be remembered that it does

not contain all that is essential to the science of numbers. Analysis

in its mission, has done all that it was possible for it to accomplish,

but it is not sufficient for the perfection of a science. There must be

synthetic thought to build up, as well as analytic thought to separate

and simplify. Comparison and generalization have an important

work to perform in unfolding the relations of the various parts and

in uniting them by the logical ties of thought, which should bind

them together into an organic unity. What we now need for the

perfection of the science of arithmetic and our methods of teaching

it, is a more philosophical conception of its nature, and a logical

relating of its parts which analysis leaves in a disconnected condition.

It is worthy of remark that arithmetic,in respect to logical symme-

try and completeness, differs widely from its sister branch—geom-

etry. The science of geometrj^ came from the Greek mind almost as

perfect as Minerva from the head of Jove. Beginning with definite

ideas and self-evident truths, it traces its way, by the processes of

deduction, to the profoundest theorem. For clearness of thought,

closeness of reasoning, and exactness of truths, it is a model of excel-

lence and beauty. It stands as a type of all that is best in the classi-

cal culture of the thoughtful mind of Greece. Geometry is the per-

fection of logic ;
Euclid is as classic as Homer.

The science of numbers, originating at the same time, seems to

have presented less attractions or greater difficulties to the Greek

mind. It is true that the great thinkers grew enthusiastic in the

contemplation of numbers, and spent much time in fanciful specu-

lations upon their properties, but this did comparatively little for

the development of the science. The present system of arithmetic

is mainly the product of the thought of the past three or four cen-

turies. Developed by minds less logical than those of the old
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Greeks, and growing partly out of the necessities of business, it

seems not to have acquired that scientific exactness and finish

which belong to the science of geometry. That it has intrinsically

as logical a basis and will admit of as logical a treatment, cannot

be doubted. To endeavor to exhibit the true nature of the science,

show the logical relation of its parts, and thus aid in placing it

upon a logical foundation beside its sister branch, geometry, is the

object of the present treatise.

The work is divided into five parts, besides the Introduction.

The Introduction contains a Logical Outline of Arithmetic, and a

brief History of the science, including an account of the Origin of

the Arabic system, the Origin of the Fundamental Operations, and

an account of the Early Writers on the science. The facts pre-

sented have been gathered from a variety of sources, and have

been carefully compared, so far as was possible, with the originals,

to secure entire accuracy in the statements. The principal author-

ities followed are Leslie, Peacock, and De Morgan. As much is

presented as it is supposed will be of interest to the teacher or gen-

eral reader; any who desire more detailed information are referred

to the writers mentioned.

Part First treats of the general nature of arithmetic, embracing

the Nature of Number, the Nature of Arithmelival Language, and the

Nature of Arithmetical Reasoning. The natute of Number is quite

fully considered, especially in its relation to the idea of Time.

Various definitions of Number are presented and examined, and

the eflbrt is made to ascertain that which may be regarded as the

best for general use.

The Nature of the Language of Arithmetic is discussed upon a

broader basis than usual. The true relation of Numeration to

Notation, which seems to have been overlooked by many authors,

and which is frequently not understood by pupils, is explained.

It is shown that Numeration is merely the oral and Notation the ivrit-

ten language of Arithmetic. The philosophy of the Arabic system

of notation, the objections to the decimal scale, and the advantages

of a duodecimal system of arithmetic, are discussed.



VI PREFACE.

Considerable attention is given to the nature of Arithmetical

Reasoning, a subject which seems not to have been very clearly

understood by logicians and arithmeticians. The effort is made

to put this matter upon a logical basis, and to ascertain and pre-

sent the true nature of the logical processes by which the science

of numbers is unfolded. The ground being almost entirely new, it

is not to be supposed that the investigation is at all complete ;
but

it is hoped that what is given may induce some one to present a

more thorough development of the subject.

The fundamental idea of the work is that arithmetic has a triune

basis; that it is founded upon and grows out of the three logical

processes. Analysis, Synthesis, and Comparison. This is a new gen-

eralization, and is believed to be correct. It has been previously

maintained that all of Arithmetic is contained in the two processes,

Addition and Subtraction
;
and that the whole science is a logical

outgrowth of these two fundamental ones. In this work it is

shown that Synthesis and Analysis are mechanical operations, giving

rise to some of the divisions of the science, that the mechanical

processes are directed by the thought process of Comparison, and

that this itself gives rise to a larger part of the science. The old

writers held that we can only unite and separate numbers ;
in this

work it is held that we can unite, separate, and compare numbers.

Proceeding with this idea, it is shown that, regarding Addition,

Subtraction, Multiplication, and Division, as the fundamental oper-

ations of arithmetic, there will arise from them several other pro-

cesses of a similar character, which I have called the Derivative

Processes of Synthesis and Analysis. It is then seen that for each

analytical process there should be a corresponding synthetic pro-

cess. There will thus arise a new process, the opposite of Factoring,

to which I have given the name of Composition. This process, it

will be seen, contains several interesting cases, which correlate with

the different cases of Factoring. It is of especial interest in Alge-

bra, as may be seen in my Elementary Algebra.

Continuing this thought, it is shown that Ratio, Proportion, the



PREFACE. VU

Progressions, etc., are not the outgrowth of either Synthesis or

Analysis, but of the thought process
—

Comparison. Attention is

called to the nature of Ratio, a new definition is suggested, and the

correctness of the prevailing method of finding the ratio of two

numbers, which has been questioned, is vindicated. Suggestions

are also made for improvements in some of the definitions and

methods of treating Ratio, Proportion, Progressions, etc. The log-

ical character of Percentage is exhibited, and the simplest and most

practical method of treatment suggested. Several interesting

chapters are also presented upon the Theory of Numbers.

The subject of Fractions is quite fully discussed, the attempt be-

ing made to exhibit their nature and their logical relation to inte-

gers. The possible cases which may arise are considered, and a

new case, called the Relation of Fractions, first given in one of my
arithmetics, and already introduced into several other arithmetical

works, is presented and explained. It is also shown that the sub-

ject of Fractions admits of two methods of treatment, logically distinct

in idea and form, and both treatments are presented. Especial at-

tention is given to the treatment of Circulates, and the most impor-

tant principles concerning them are collated.

The nature of Denominate Numbers, which seems to have been

imperfectly understood, is explained upon what is regarded as the

correct basis. They are shown to be numerical expressions of con-

tinuous quantity, in which some artificial unit is assumed as a meas-

ure. This leads to the adoption of a new definition of Denominate

Numbers, difi'erent from that which we usually find in our text-

books. The origin of the measures in the various classes of

Denominate Numbers is also stated, and many interesting facts

concerning them are given.

While the philosophical part of the work is that which will at-

tract the most attention among thinkers, the historical part will be

quite as interesting and instructive to the majority of younger

readers. In the historical part, of course, no claims to original

investigation are made
;
but the best authorities have been con-
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suited
; and, in many cases, their very language has been used, their

expression being so clear and concise that I could not hope to im-

prove it. In thus combining with the philosophy of arithmetic its

history, which in many cases aids in unfolding its philosophy, I

have aimed to present a work especially valuable to students and

the younger teachers of arithmetic. Such a work, I feel, would have

been invaluable to me in my earlier years as a teacher.

It is proper to remark that the work was mainly written about

twelve years ago. This might be regarded as an advantage; for,

according to the recommendation of Horace, publication should not

be hurried, but "a work should be retained till the ninth year." Quin-

tilian also remarks concerning his own great work on Oratory that

lie allowed time for reconsidering his ideas,
" in order that when the

ardor of invention had cooled I might judge of them on a more

careful re-perusal, as a mere reader." In re-perusing the manuscript

I see no reason for any change of opinion, in regard to any of the

ideas presented, though I am conscious that the manner of pre-

senting several subjects might, in some respects, be improved by

being re-written; but I have decided to let them stand as originally

conceived and expressed, thinking that they may thus gain in fresh-

ness and vividness of conception what they may lack in elegance of

style. A few of the peculiar ideas have already been presented in

one or two of my text-books, and my logical outline of arithmetic

was, by my permission, adopted in a work on mathematics by Mr.

Goodrich of New Haven.

Cherishing many pleasant remembrances associated with the dis-

cussion of these ideas before my pupils in the class-room, to many of

whom their publication will prove a reminder of days gone by, I

commit the work, with its merits and demerits, to an indulgent

public, with the hope that it may be of assistance to the younger

members of the profession, and contribute somewhat towards the ful-

ler appreciation of the interesting and beautiful science of numbers.

EDWARD BROOKS.
Normal School, Millersville, Pa.,

January 16, 1876.
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THE PHILOSOPHY OF ARITHMETIC.

INTRODUCTION.

CHAPTER L

A LOGICAL OUTLINE OF ARITHMETIC.

THE
Science of Arithmetic is one of the purest products of

human thought. Based upon an idea among the ear-

liest which spring up in the human mind, and so intimately-

associated with its commonest experience, it became in-

terwoven with man's simplest thought and speech, and was

gradually unfolded with the development of the race. The
exactness of its ideas, and the simplicity and beauty of its re-

lations, attracted the attention of reflective minds, and made
it a familiar topic of thought ; and, receiving contributions from

age to age, it continued to develop until it at last attained

to the dignity of a science, eminent for the refinement of its

principles and the certitude of its deductions.

The science was aided in its growth by the rarest minds of

antiquity, and enriched by the thought of the profoundest
thinkers. Over it Pythagoras mused with the deepest enthu-

siasm; to it Plato gave the aid of his refined speculations; and

in unfolding some of its mystic truths, Aristotle employed his

peerless genius. In its processes and principles shines the

thought of ancient and modern mind—the subtle mind of the

Hindoo, the classic mind of the Greek, the practical spirit of

the Italian and English. It comes down to us adorned with

(13)
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the offerings of a thousand intellects, and sparkling with the

gems of thought received from the profoundest minds of nearly

every age.

And yet, rich as have been the contributions of the past,

few of the great thinkers have endeavored to unfold its logical

relations as a science, and discover and trace the philosophic

thread of thought that binds together its parts into a complete
and systematic whole. Unlike its sister branch geometry,
which came from the Greek mind so perfect in its symmetry
and classic in its logic, the science of arithmetic has been treated

too much as a system of fragments, without the attempt to

coordinate its parts and weave them together with the thread of

logic into a complete unity. To remedy this defect is the special

object of a work on the Philosophy of Arithmetic, and is the

task which the author of the present work has with diffidence

attempted.

Like all science, which is an organic unity of truths and

principles, the science of arithmetic has its fundamental ideas,

out of which arise subordinate ones, which themselves give

rise to others contained in them, and all so related as to give

symmetry and proportion to the whole. "What are these fun-

damental and derivative ideas, what is the law of their evolu-

tion, what is the philosophical character of each individual

process, and what is the logical thread of thought that binds

them all together into an organic unity? These are the ques-

tions that meet us at the threshold of the effort to unfold a

philosophy of arithmetic; they are the foundation upon which

such a superstructure must be erected
;

and we begin the

answer to these questions in the first chapter, under the head

of A Logical Outline of Arithmetic, which exhibits the fun-

damental operations and divisions of the science.

To this Logical Outline the special attention of the reader

is invited, as it is not only the foundation upon which the au-

thor has builded, but also the frame-work of the system. In
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it the science is assumed to be based upon the three processes—
Synthesis, Analysis, and Comparison; general processes in

which each individual process must have its root, and from

which it is developed. This generalization marks a new

departure in the method of regarding the science, and the re-

lation of its parts ;
and shows the incorrectness of opinions

around which has gathered the dust of centuries. Our first

inquiry is, what is A Logical Outline of Arithmetic f

All numerical ideas begin with the Unit. It is the origin,

the basis of arithmetic. From it, as a fundamental idea,

originate all numbers and the science based upon them. Begin-

ning, then, at the Unit, let us see how the science of arithmetic

originates and is developed.

The Unit can be multiplied or divided. This gives rise to

two classes of numbers. Integers and Fractions. Integers

originate in a process of synthesis, Fractions in a process of

analysis. Each Integer is a synthetic product derived from a

combination of units; each Fraction is an analytic product

derived from the division of the unit. There are, therefore,

two general classes of numbers. Integers and Fractions,

treated of in the science of arithmetic.

Having obtained numbers by a combination of units, we may
unite two or more numbers and thus obtain a larger number

by means of synthesis ;
or we may reverse the operation and

descend to a smaller number by means of analysis. Numbers,

therefore, can be united together and taken apart; they can be

synthetized and analyzed; hence Synthesis and Analysis are

the two fundamental operations of arithmetic. These funda-

mental operations give rise to others which are modifications

or variations of them. Arithmetic, therefore, from its primary

conception seems to consist of but two things,—to increase and

to diminish numbers, to unite and to separate them. Its pri-

mary operations are Synthesis and Analysis.
To determine when and how to unite, and when and how
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to separate, we employ a process of reasoning called Compari-
son. This process compares numbers and determines their

relations. Synthesis and Analysis are mechanical processes ;

Comparison is the thought process. Comparison directs the

original processes, modifies them so as to produce from them

new ones, and also gives rise to other processes not contained

in the original ones. It is, in other words, by this thought

process Avorking upon the idea of number, that the original

processes of Synthesis and Analysis are directed and modified,

that other processes are developed from them, and that new
and independent processes arise, and the science of arithmetic

is developed. Comparison, therefore, in arithmetic as'in geom-

etry, is the process by which the science is constructed, or

the key with which the learner unlocks its rich storehouse of

interest and beauty.

Arithmetic, it is thus seen, consists fundamentally of three

things; Synthesis, Analysis and Comjiarison. Synthesis and

Analysis are fundamental mechanical operations, suggested in

the formation of numbers; Comparison is the fundamental

thought process which controls these operations, eliminates

their potential ideas, and also gives rise to other divisions of

the science growing immediately out of itself. In other

words, the science of arithmetic has a triune basis; it has its

roots in, and grows out of, the three processes. Synthesis,

Analysis, and Comparison. Let us examine these processes

and see the number, nature, and relations of the divisions

growing out of the fundamental operations, and thus deter-

mine the logical character of the science of arithmetic.

Synthesis.—A general synthesis is called Addition. A spe-

cial case of the synthetic process of Addition, in which the

numbers added are all equal, their sum receiving the name of

product, is called Multiplication. The forming of Composite
Numbers by a synthesis of factors, which may be called

Composition ; Multiples, formed by a synthesis of particular
factor?

;
and Involution, by a synthesis of equal factors, are
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all included under Multiplication. Hence, since Involution,

Multiples, and Composition, are special cases of Multiplication,

and Multiplication is itself a special case of Addition, the pro-

cess of Addition includes all the synthetic processes to which

numbers can be subjected.

Analysis.—A general analysis, the reverse of Addition, is

called Subtraction. A special case of Subtraction, in which

the same number or equal numbers are successively subtracted

with the object of ascertaining how many times the number

subtracted is contained in another, is called Division. Factor-

ing is a special case of Division in which many or all of the

factors of a number are required ;
Evolution is a special case

of factoring in which one of the several equal factors is re-

quired ;
and Common Divisor is a case of factoring in which

some common factor of several numbers is required. The

process of Division, therefore, includes the processes of Factor-

ing, Common Divisor, and Evolution; and since Division is a

special case of Subtraction, all of these processes are logically

included under the general analytic process of Subtraction.

Comparison.—By comparison the general notion of relation

is attained, out of which arise several distinct arithmetical

processes. By comparing numbers, we perceive the relations

of difference and quotient; and giving measm'es to these, we

have Batio. • A comparison of equal ratios gives us Propor-
tion. A comparison of several numbers ditfering by a common

ratio gives us Arithmetical and Geometrical Progression. In

comparing concrete numbers, when the unit is artificial, we

perceive that they differ in regard to the value of the units,

and also that we can change a number of units of one species

into a number of another species of the same class
;
and thus

we have the process called Reduction. In comparing abstract

numbers we notice certain relations and peculiarities which,

investigated, give rise to the Properties or principles of num-

bers. In comparing numbers, we may assume some number

as a basis of reference and develop their relations in regard to
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this basis
;

—when this basis is a hundred, we have the pro-

cess called Percentage.
Thus we obtain a complete outline of the science of numbers,

and perceive more clearly the logical relations of the divisions

of the science. Arithmetic is conceived as based upon the two

fundamental operations, synthesis and analysis, these opera-

tions being controlled by comparison, which develops new

processes from these and also from itself. The whole science

of Pure Arithmetic is the outgrowth of this triune basis, Syn-

thesis, Analysis, and Comparison. The rest of arithmetic

consists of the solution of problems, either real or theoretic,

and may be included under the head of Applications of Arith-

metic.

This conception of the subject is new and important. It has

been heretofore held that addition and subti'action compre-
hended the entire science of arithmetic; that all other pro-

cesses are contained in them, and are an outgrowth from them.

This is a fallacy, which, among other things, has led logicians

to the absurd conclusion that there is no reasoning in arith-

metic. Assuming that there is no reasoning in the primary

processes of synthesis and analysis, and that these primary

processes contain the entire science, they naturally conclude

that there is no reasoning in the science itself. The analysis

of the subject here given dispels this error and' exhibits the

subject in its true light. Synthesis and Analysis are seen to

be the primary mechanical processes ; Comparison, the thought

process, touches them with her wand of magic, and they ger-

minate and bring forth other processes, having their roofs in

these primary ones. Comparison also becomes the foundation

of processes distinct from those of synthesis and analysis,

processes which cannot be conceived as growing out of syn-

thesis and analysis, but which have their root in the thought

process of the science—in Comparison.
This outline of the science grows out of the pure idea of

number, independent of the language of arithmetic. These
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fundamental processes are modified by the method of notation

employed to express numbers. With the Roman or Greek

methods of notation, the methods of operation would not be

the same as with the Arabic system. The method of "
carry-

ing one for every ten," of "borrowing" in subtracting, the

peculiar methods of multiplying and dividing, grow out of the

Arabic system of notation. A portion of the treatment of

common and decimal fractions arises from the notation adopted,

and the principles and processes of repetends originate in the

same manner. The methods of extracting square and cube

root would be different if we employed a different method of

expressing numbers. It is thus seen that the fundamental

divisions of arithmetic arise from the pure idea of number, that

the processes in these divisions are modified by the method of

notation adopted, and also that some of the principles and pro-

cesses of the science grow out of this notation. It may be

remarked, also, that the power of arithmetic as a calculus

depends upon the beautiful and ingenious system of notation

adopted to express numbers.

It is believed that the above view of arithmetic must tend

to simplify the subject, and that much clearer notions of the

science will be attained when these philosophical relations are

apprehended. A general view of the subject is presented by
the following analytical outline :

Logical
Outline

of
Arithmetic,

I. Synthesis. {^,^t'!i-,j„„

II. Analysis. {|>>WJ?=^;--

III. Comj^arison.

1.

2.

3.

4.

5.

6.

Composition,
f Common Multiple,
t Involution.

Factoring.
•

-J
/ Common Divisor,

i t Evolution.
Ratio.

Proportion.
Protrression.
Reduction.

Percentage.
Properties of Numbers.
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CHAPTER II.

ORIGIN AND DEVELOPMENT OF ARITHMETIC.

THE
science of Arithmetic is coeval with the race. E very-

people, no matter how uncivilized, must have possessed
some ideas of numbers, and employed them in their transactions

with each other. These ideas would be multiplied, and the

methods of operation founded upon them gradually extended

and improved as the nation advanced in civilization and intel-

ligence. The history of Arithmetic is, therefore, inseparably
connected with the history of civilization and the race. The

origin of its elementary processes must, of necessity, be in-

volved in obscurity and uncertainty. History can speak posi-

tively only of some of the higher and more recent developments
of the science.

In presenting what is known concerning the history of arith-

metic, we shall consider three things : the origin of our present

system of arithmetic
;
the origin of the fundamental operations ;

and the early writers on the science. Other historical facts

will be mentioned in connection with the particular subjects to

which they belong. One of the most interesting inquiries is

that which relates to the origin of the system of arithmetic

now generally adopted, which we shall consider in the present

chapter.

The origin of our present system of Arithmetic has been at-

tributed to various nations. The Greeks, the Chaldeans, the

Phoenicians, the Egyptians, and the Hebrews, have all been

claimed as its inventors. Gatterer, an eminent German histo-

rian, tells us that ciphers were primordial letters, invented by
Taaut, or Thaut, with which the ancient Egyptians and Phoe-

nicians were well acquainted; and that they gradually became

(21)
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known to all Oriental nations, among whom they were preserved
until the victorious arms of the Mussulman penetrated into India,

and brought back those precious monuments of genius. This,

however, is very improbable, since there are no characters upon
the Egyptian monuments that bear any resemblance to those

of our denary system. Like the Chinese and some others, they
are abridged representations of objects rather than arbitrary

signs.

It is now generally believed that this system originated among
the Hindoos. The people of Hindostan, and nations communi-

cating with them, have, for many centuries, been acquainted
with the denary system, and the most careful investigations

point to the Hindoos as the inventors of the system. Their

sacred books, which have been in the hands of the priesthood
for centuries, contain the numeral characters, quite similar in

form to those now in use. We
give in the margin, copied from ^"^ 3 O ^ S\3l/ ^_^
Leslie, the Sanskrit digits, in

what are called the Devanagari character. From these the

common Hindoo digits, also presented in the margin, are sup-

posed to have been formed, with

only a slight alteration of form. C{^3 ^ MZQy^KP
The Burman figures are evi-

dently of the same origin, but have a thin wiry body, being

generally written on the palmyra leaf with the point of a needle.

Among the sacred writings of the Hindoos, there is preserved
a treatise on Arithmetic and Mensuration, written in the San-

skrit language, called Lilawati. This was regarded as of such

inestimable value as to be ascribed by them to the immediate

inspiration of Heaven. After an introductory preamble and

colloquy of the gods, it begins with the expression of numbers

by nine digits and the cipher, or small o. The characters are

Bimilar to those in present use, and the method of notation is

the same. It contains the common rules of arithmetic, and the

extraction of the square root as far as two places. The exam
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pies are generally very easy, scarcely forming any part of the

text, and are written in the margin with red ink. This work

,
is very old, and proves that the Hindoos have possessed this

system for many centuries. Their knowledge of the science,

however, is quite limited. They have no idea of the decimal

scale descending, and their management of fractions is tedious

and embarrassed. But notwithstanding the limited character

of their knowledge, we are unable to trace the origin of the

science to any earlier source, and to them must be ascribed the

honor of its invention. They disclaim this honor, however,

referring it to Divinity, maintaining that the invention of the

nine figures and the device of place, is to be ascribed to the

beneficence of the Creator of the universe.

it has been thought strange that a people so little celebrated

in-science and the history of thought should have originated so

important a system as the digital method of notation, while

other nations, much more eminent in science and philosophy,
seemed to have been unequal to the task. Leslie says, "If the

exuberant fancy of the Greeks led them far beyond the denary

notation, it seems probable that the feebler genius of the Hin-

doos might just reach the desirable point, without diverging into

an excursive flight." A more intimate knowledge of the Hin-

doos, however, shows that they are remarkable for ingenuity

and subtlety of thought; and this invention is therefore not to

be regarded as the product of a feeble mind, but as one of the

highest triumphs of inventive genius known in the history of

scientific investigation.

It was for a long time supposed that the present system of

arithmetic was due to the Arabians. The characters in general

use were named Arabic characters, and the method of express-

ing numbers was called the Arabic method of notation. Thi.s

is also indicated by the two words "
cipher" and

" zero." Cipher

is the Arabic "sifrun," which means empty, a translation of the

Sanskrit name of the naught, "sunya." The same character,

the naught, is called "zephiro" in Italian, which has, by rapid
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pronunciation, been changed to "zero." This form occurs as

early as 1491, in a work of Philip Calandri on Arithmetic, pub-

lished in Florence. The infiuerice exerted by the Arabs in the

introduction of the system into Europe led to the belief that it

originated with them, and caused it to be called the Arabic

system.

The Arabs, however, it is now positively known, were not

the authors of the system. It appears that they were not ac-

quainted with the denary characters before the twelfth or thir-

teenth century. They cultivated mathematics with ardor, but

seldom aspired to original efforts, contenting themselves gen-

erally with copying their Grecian masters. It seems probable,

from all the information we have upon the subject, that they
did not adopt the denary system until after an easy communi-

cation was opened with Hindostan. They might have derived

it through the Persians, who were conquered by them in 636,

and whose religion and at least one of their dialects they had

adopted; and who, like the Arabs themselves, were distin-

guished for a love of science and a spirit of conquest. The

Arabic numerals resemble the Persian, which are now current

over India, and are there esteemed the fashionable characters.

It should be stated also that the Arabs do not claim the inven-

tion of these figures, but universally ascribe it to the Indians,

and there is now very little doubt that the Brahmins were the

original inventors of the numerical symbols and the system of

denary arithmetic.

It is an interesting fact that Boethius, in his work Z>e Geo-

metria, informs us that the disciples of Pythagoras used in their

calculations nine i^eculiar figures, while others used the letters

of the alphabet. It is probable that this philosopher, who had

traveled considerably, had obtained this knowledge in Hin-

dostan
;
and communicating it as a secret to his disciples, caused

it to remain sterile in their hands.

It still remains a question when and by wnom these charac-

ters were originally introduced into Europe. By some, the
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period is fixed at or near the beginning of the 11th century;
others suppose it to have been at least 250 years later. The

question is one of much difficulty, especially since this intro-

duction was anterior to the invention of printing. The general

belief is that the system was introduced into Europe by the

Arabs. While the Christian world was enveloped in ignorance,

the Arabs were cultivating, with great success, the learning

and literature of Greece. Though not highly gifted with cre-

ative powers of mind by which they made many valuable addi-

tions to what they thus acquired, they are to be honored

because they "preserved and fanned the holy fire." Their

efforts at conquest had been crowned with brilliant success

Spain had yielded to their sway, and the Moors had become

celebrated throughout Europe for the splendor of their institu-

tions and the proficiency of their scholars.

Disgusted with the trifling of their own schools, energetic

and aspiring yo»ung men from England and France repaired to

Spain to learn philosophy from the accomplished Moors. There

they studied arithmetic, geometry, and astronomy, and made

themselves familiar with the Arabic method of notation and

calculation. On their return they brought the characters and

methods of the Arabic arithmetic with them and introduced

them to the scholars of Northern Europe, and thus in time they

gradually displaced the Roman system.

Efforts have been made to ascertain what persons were most

conspicuous in the introduction of the Arabic characters and in

leading the people of Europe to make the transition from the

Roman to the Arabic system of calculation. Among the most

celebrated of these "pilgrims of science" was an obscure monk

of Auvergne, named Gerbert. Possessing an ardent love for

science, he applied himself with great energy to the study of

their mathematics, consisting of arithmetic, geometry, and as-

tronomy. Returning to his native country, after the comple-

tion of his studies, he became widely celebrated for his genius

and learning; and, as was natural with a people enveloped in
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ecclesiastical ignorance and superstition, who remembered that

he had pursued his studies among infidels, there were not

wanting those who represented him as being a magician and in

league with the Evil One. But so great were his genius and

influence, that he triumphed over the accusations of malice, and

rose eventually to the Papal chair, which position he filled under

the title of Sylvester II. Gerbert died in the year 1003, leav-

ing a legacy of valuable learning to the world. He wrote ex-

tensively upon the subjects he had studied in Spain. His

treatises upon arithmetic and geometry were valuable, pre-

senting many rules for abbreviating the operations then in

common use. In some manuscript copies of his works, the

numbers are expressed in the denary characters, and it is there-

fore claimed that to him belongs the honor of their introduction

into Europe. Others suppose, however, that these characters

crept in through the license of transcribers, and maintain that

we are not warranted in concluding that Gerbert had the merit

of introducing the Arabic symbols to Northern Europe.

Another candidate for the honor of the introduction is Roger
Bacon. This claim is based upon an old almanac preserved in

the Bodleian Library, at Oxford, which contains numerals in

their earliest form, and of which, in the general spirit of assign-

ing to Bacon all the great inventions and discoveries of the

times whose origin is shrouded with mystery or uncertainty, it

was supposed that he was the author, and hence the intro-

ducer of the denary characters. The claim, however, instantly

ceases when it is remembered that the work is dated 1292, the

same year that Bacon died, and that it was calculated for

the meri'dian of Toledo. It is very probable that it was

written in France and imported into England. John of Hali-

fax, a cotemporary of Bacon, wrote a work about this time

which, in several manuscript copies, contains the denary nu-

merals; and the honor, therefore, has been also ascribed to him.

But it is probable that these ciphers, as they Avere called,

were introduced, not by the author, but by subsequent copyists.
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Leslie thinks that the modern system of arithmetic, as well

as the higher art of algebra, was first brought into Europe by
Leonardo Bonacci, of Pisa, a wealthy merchant who traded

on the coast of Africa and the various ports of the Levant

Tempted by commercial speculation to visit those countries, he

was induced by a love of knowledge to study thoroughly the

science of calculation among the Arabians. On his return to

Italy in 1202, he composed a treatise on arithmetic which he

enlarged in 1228. His manuscript lay more than two centuries

neglected when Lucas Pacioli, or Di Borgo, instructed chiefly

by its perusal, published successively between the years 1470

and 1494, the earliest and most extensive printed treatise on

arithmetic and algebra.

Denary numerals, it is known, were first used by the astron-

omers of France and Germany in composing calendars which

were sent to the various religious houses. By this means the

characters were generally diffused throughout Europe. Gerard

Vossius, a learned man of the 16th century, supposes this to

have been about the year 1250. Du Cange, by some regarded
as a more reliable authority, maintains that it could not have

been previous to the 14th century, as ciphers were not known
before that time. Father Mabillon, a man of great research,

assures us that he met them in dates previous to the year 1400

Kircher, generally known as "Father Kircher," a Jesuit of vast

acquirements, refers the introduction of the numerals to the

astronomical tables published by Alphonso, King of Castile, in

1252. It is suspected, however, that in the original work the

Roman or Saxon characters were employed. Two letters from

that celebrated prince to Edward I., which are still preserved
in the Tower of London, bearing dates 1272 and 1278, are

written in the ancient characters. This latter fact, however, is

not conclusive, since in writing a letter he would naturally em-

ploy the characters in common use.

There is an almanac preserved in the library of Bennet Col-

lege, Cambridge, containing a table of eclipses for the period
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from 1330 to 1348. This almanac contains a brief explanation
of the use of numerals and the principles of the denary notation.

From this we may infer, that the use of the denary notation

was, at this date, very imperfectly understood.

A little tract in the German language entitled De Algorismo,

bearing the date 1390, explains with great brevity the digital

notation and the elementary rules of Arithmetic. At the end

of a short missal, similar directions are given in verse, which

from the form of the writing seem to belong to the same period.

The characters, of which these

in the margin are an exact fac

simile, are in both manuscripts
written from right to left, the

order which the Arabians would naturally follow.

The great Italian poet, Petrarch, has the honor of leaving

us one of the oldest authentic dates in the numeral charac-

ters. The date is 1375, written upon a copy of St. Augustine.
The college accounts in the English universities were gener-

ally kept in the Roman numerals until the beginning of the six-

teenth century. The Arabic characters were not used in the

parish-registers before 1600. The oldest date met with in

Scotland is that of 1490, which occurs in the rent-roll of the

Diocese of St. Andrew's.

It must have been about this period that a knowledge of the

denary method of notation began to be spread over Europe.

Eminent scholars may have been familiar with it some few years

before, but at this time it began to be generally known and prac-

ticed among learned men.

The forms of several of the figures have undergone consid-

erable change since their first introduction into Europe. In the

oldest manuscripts, the figures, 4, 5, and 7 are most unlike the

present characters. The 4 consists of a loop with the ends

pointing down; the 5 has some likeness to the figure 9; and

the 7 is simply an inverted Y. In the dates used by Caxton

in the year 1480, the 4 has assumed its present shape, but the
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5 and 7 are still very unlike the same characters of to-day. No
reason is assigned for these changes; they appear to have been

gradual, and the result of chance rather than intention. It may
also be stated that no attempt is made to attach any especial

significance to the forms of the numerals
;

if there be a symbol-
ism hidden in their form, it has yet to be unveiled.

This explanation of the introduction of the present system of

arithmetic into Europe has been generally received as the true

one
;
recent investigations, however, have thrown some doubt

upon it. It is supposed that these numerical symbols had found

their way into Europe before the invasion of Spain by the Mo-

hammedans. A work, through which the Arabs in the ninth

century became initiated into the science of Indian ciphering
and arithmetic, is extant. This work was founded on treatises

brought from India to Bagdad in 713, and was translated again
into Latin during the Middle Ages. It is also asserted that the

figures used in the principal countries of Europe during the

Middle Ages, and, with some modifications, at the present day,

differ considerably from the figures used in the East, and ap-

proach very nearly to those used by the Arabs in Africa and

Spain. This would seem to indicate that the Arabs did not

bring their figures, which they had learned in the East, with

them into Spain. Again, it is supposed that the Neo-Pythago-

reans, who were probably the first teachers of ciphering among
the Greeks and Romans, became acquainted with the Indian

figures, and adapted them to the Pythagorean Abacus, and that

Boethius, or his continuator, made these figures generally known
in Europe by means of mathematical hand-books, and that thus,

long before the time of Gerbert, who, Miiller says, probably
never went to Spain, these same figures had found their way
from Alexandria into European schools and monasteries.

One of the latest writers upon this subject, M. Woepcke, an

excellent Arabian scholar and mathematician, says that the

Arabs have two sets of figures, one used chiefly in the East,
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which he calls "Oriental;" another used iu Africa and Spain,
and there called "Gobar." " Gobar" means "dust," and these

figures were so called because, as the Arabs say, they were first

introduced by an Indian who used a table covered with fine

dust, for the purpose of ciphering. Both sets of figures are

called Indian bv the Arabs. The Gobar figures are said to be

modifications of the initial letters of the Sanskrit numerals, and

could not have been derived from India much after the third

or fourth century. They were probably adopted by the Neo-

Pythagoreans, and introduced into Italy and the Roman prov-

inces, Gaul and Spain, as early as the sixth century; so that the

Mohammedans, when arriving in Spain in the eighth century,

found these figures there already established. The Arabs, when

starting on their career of conquest, it is said, were hardly able

to read or write; they were certainly ignorant of ciphering, and

could not, therefore, be considered as the original propagators
of the so-called Arabic figures.

We can well understand, therefore, that the Arabs, on arriv-

ing in Spain, without any considerable knowledge of arithmetic,

should have adopted there, as they did in Greece and Egypt,
the figures which they found in use, and which had traveled

thither from the Neo-Pythagorean schools of Alexandria, and

originally from India; and likewise that when, in the ninth and

tenth centuries, the new Arabic treatises on arithmetic arrived

in Spain from the East, they should have adopted the more

perfect system of ciphering carried on without the Abacus, and

rendering, in fact, its columns unnecessary by the judicious

employment of the naught. But., while dropping the Abacus,

there was no necessity for their discontinuing or changing the

figures to which the Arabs, as well as the Spaniards, had been

accustomed for centuries
;
and hence we find that the Arabic

figures were retained in Spain, only adapted to the purpose of

the new Indian arithmetic by a more general use of the naught.

The naught was known in the Neo-Pythagorean schools; but

with the columns of the Abacus it was superfluous, while, with
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the introduction of ciphering in ffne powder, and without col-

umns, its use naturally became very extensive. As the system
of ciphering in fine powder was called "Indian," the Gohar

figures, too, were frequently spoken of under the same name,
and thus the Arabs in Spain brought themselves to believe that

they had received both their new arithmetic and their figures

from India; the truth being, according to M. Woepcke, that

they had received their arithmetic from India directly, while

their figures had come to them from India indirectly, through
the mediation of the Neo-Pythagorean schools.

M. Woepcke thinks that the Indian figures reached Europe

through two channels
;
one passing through Egypt about the

third centur}-; another passing through Bagdad in the eighth

century, and following the track of the victorious Islam, The
first carried the earlier forms of the Indian figures from Alex-

andria to Rome, and as far as Spain; the second carried the

later forms from Bagdad to the principal countries conquered

by the Khalifs, with the exception of those where the earlier or

Gobar characters had already taken firm root. He regards our

figures as modifications of the early Neo-Pythagorean or Gobar

form, and admits their presence in Europe long before the science

and literature of the Arabs in Spain could have reacted on the

seats of classical literature. The only change produced in the

ciphering of Europe by the Arabs was, he supposes, the sup-

pression of the Abacus, and the more extended use of the cipher.

He thinks our figures are still the Gobar figures, written in a

more cursive manner by the Arabs of Spain; and that those

who, in the twelfth century, went to Spain to study Arabic and

mathematics, learned there the same numerals which Boethius,

or his continuator, taught in Italy in the sixth century. In

the MSS. of the thirteenth and fourteenth centuries, the figures

vary considerably in diflFerent parts of Europe, but they are at

last fixed and rendered uniform by the introduction of printing
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EARLY WRITERS ON ARITHMETIC.

THE
earliest writers upon the science of arithmetic of whom

we have any definite knowledge, are the mathematicians

of Greece. They cultivated the science to some considerable

extent, and early distinguished between the theory and prac-

tice of arithmetic. Considered in relation to its principles,

they called it Logistic ;
and as a collection of rules, the Art of

Arithmetic. The science with them was speculative, aboujjd-

ing with fanciful analogies.

It is a matter of surprise that the Greeks, so intellectual and

cultivated, did not invent a simple and convenient method of

arithmetical notation. Their system was complicated and

inconvenient, rendering calculation with large numbers difficult

and tedious. The land of Plato and Aristotle, it would seem,

should have been equal to the task of inventing the simple,

and apparently evident system of notation now in general use.

A commentator, in allusion to this, says: "The ingenuity and

varied resoui-ces of the Greeks were the main causes which

diverted them from discovering our simple denary system.

Their exuberant fancy led them beyond the denary scale
;
the

feeble genius of the Hindoos might just reach it without mount-

ing into an excursive flight." More recent investigations have

given us clearer ideas of the philosophical character of the

Hindoo mind, and serve to modify this opinion.

Pythagoras, an eminent geometer, who lived about 6Q0 B. C,
was one of the earliest writers upon mathematics. He brought

from the East a passion for the mysterious properties of

numbers, under the veil of which he probably concealed some

of his secret and esoteric doctrines. He regarded numbers as

{ 32 )
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of Divine origin
—the fountain of "existence—the model and

archetype of things—the essence of the universe. He divided

them into classes, to each of which were assigned distinct

and peculiar properties. They were Prime and Composite;
Perfect and Imperfect; Redundant and Defective; Plane and

Solid; Triangular, Square, Cubical, Pyramidal. Even num-

bers were regarded as feminine; odd numbers were masculine,

partaking of celestial natures.

Euclid was the first writer upon arithmetic whose works

have come down to us. His treatise is contained in the "Ith,

8th, 9th and 10th books of Euclid's Elements, in which he

treats of proportion and of prime and composite numbers.

These books are not included in the common editions of Euclid,

but are found in an edition by the celebrated Dr. Barrow. It

is supposed that Euclid was quite largely indebted to Thales

and Pythagoras for his knowledge of the subject, though he

undoubtedly added much to the science himself. His school at

Alexandria was highly celebrated, being attended by the Egyp-
tian monarch, Ptolemy Lagus. It was this pupil to whom Eu-

clid, upon being asked if there was an easier method of learning

mathematics, replied, "There is no royal road to geometry."

Archimedes, born 291 B. C, was an eminent mathematician,

and made discoveries in the sciences of geometry and natural

philosophy, among which are the ratio of the cylinder to the

inscribed sphere and cone, the method of determining the

specific gravity of bodies, etc. He no doubt added much to

arithmetical science also; but in the few fragments of his

writings which have come down to us, we find nothing upon
the subject.

Eratosthenes, who flourished about 200 years before Christ,

invented the method of determining prime numbers, known as

Eratosthenes' sieve. Nicomachus, who is supposed to have

lived near the Christian era, wrote a work upon the distinctions

of numbers, dividing them into plane, solid, triangular, pyra-

midal, etc.
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Diophantus, a Greek mathetiiatician of Alexandria, who
lived about the middle of the 5th century, composed thirteen

books upon the subject of arithmetic, only six of which have

come down to us. He is also celebrated as being the first

writer upon algebra, which he applied to the investigation of

the properties of numbers. He invented the method of math-

ematical investigation known as the Diophantine Analysis.

Boethius, the next writer of eminence, lived about the begin-

ing of the 6th century. His work, it is said, was, in the

main, a copy of Nicomachus. The arithmetic of Boethius was
the classical work of the Middle Ages, and became the model of

many subsequent writers, even down to the fifteenth century. It

was entirely theoretical, treating of the properties of numbers,

particularly their ratios, and gave no rules of calculation; and

we have no means of telling whether the philosophers of this

school reckoned on their fingers, or used an abacus. In the

manuscript editions of this work current during the 11th cen-

tury, in which there is a description of the Mensa Pythagorea,
also called the abacus, mention is made of nine 'figures which

are ascribed to the Pythagoreans or Neo-Pythagoreans. This

passage is by some considered spurious, and ascribed to a

continuator of Boethius.

The oldest text-book on arithmetic employing the Arabic or

Indian figures and the decimal system, is undoubtedly that of

Avicenna, an Arabian physician, who lived in Bokhara about

A. D. 1000. The work was found in manuscript in the library

at Cairo, Egypt; and contains, besides the rules for addition,

subtraction, multiplication, and division, many peculiar proper-

ties of numbers.

Lucas di Borgo, called also Lucas Pacioli, an Italian monk,

was, according to Dr. Peacock, the author of the first printed

treatise upon arithmetic. His great work called Summa di

Arilhmetica, was published in 1484. It is said to be the first

European text-book which made use of the Arabic characters.

De Morgan, however, maintains that Di Borgo's work did not
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appear until 149-i, and that it Avas preceded by the works ot

Calandri and Peter Borgo. He says it was undoubtedly the

first work printed on algebra, and probably the first on book-

keeping.

Philip Calandri published a work on arithmetic at Florence

in 1491. It begins with a picture of Pythagoras teaching,

headed, "Pictagoras Arithmetrice introductor." His notion of

division is curious. When he divides by 8, he calls the divisor

7, demanding, as it were, that quotient which, with seven more

like itself, will make the dividend. He describes the rules for

fractions, and gives some geometrical and other applications.

John Huswirt, in 1501, published, at Cologne, a short trea-

tise on the Arabic system, apparently one of the earliest

printed in the German language. The rules are verified by

casting out nines.

Jacob Kobel, in 1514, published, at Augsburg, a work on

arithmetic. The Arabic numerals are explained, but not used.

The computation was by counters and Roman numerals. In

the frontispiece is a cut representing the mistress settling

accounts with her maid-servant by an abacus with counters.

Gaspar Lax published, at ^Paris, in 1515, a diffuse and ex-

tensive work on arithmetic, in small black letter. It treats

only of the simple properties of numbers, and the apparent

difficulty of dealing with numbers is surprising. It contains

upwards of 250 pages, filled with propositions on the simplest

properties of numbers, and not a number so large as 100 is

given in illustration.

John Schoner edited a work on arithmetic in 1534, which he

attributes to Regiomontanus. It consists of a series of demon-

strated properties of numbers connected with the Arabic nota-

tion, involving not only the common rules of computation, but

also such principles as that the number of figures in the cube

cannot exceed three times the number in the root.

Jerome Cardan published, at Milan, in 1539, a work en-

tilled Practica Arithmetica. It shows, as might have been
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expected from an Italian of that age, more power of computation
than the French and German writers. It contains a chapter on

the mystic properties of numbers, one use of which is in foretel-

ling future events. These are mostly the numbers mentioned

in the Old and New Testaments, but not altogether. In another

treatise. Cardan expresses his opinion that it was Leonard of

Pisa who first introduced the Arabic numbers into Europe.
Robert Recorde published his celebrated work on arithmetic

about 1540. It was originally dedicated to Edward YI. The

work was subsequently revised and enlarged by John Dee,

and published in 1513, restoring the original dedication, which

had been omitted in the edition prepared during the reign of

Mary. This work was subsequently revised by Mellis, who
added a third part on practice and other things, and also by
Hartwell. The last edition known is by Edward Hatton, 1699,

which contains an additional book called,
" Decimals made

easie." It is said to contain quite a number of the principles

and problems of modern text-books. Recorde introduced the

sign of equality (=) in a work on algebra, published in 1557.

This work was called by the singular title, "Whetstone of

Wit," in which he gives his reason for the symbol in the fol-

lowing quaint language : "And to avoid the tedious repetition

of these words, I will settle, as I doe often in worke use, a

pair of parallel or Gemowe lines of one length,, thus, =,
because noe 2 thynges can be more equalle."

Michael Stifel published, at Nuremberg, in 1544, his cele-

brated work entitled Arithmetica Integra. The first two

books are on the properties of numbers, on surds and incom-

mensurables, learnedly treated, and with a full knowledge of

what Euclid had done on the subject. The third book is on

algebra, and passes for the introduction of algebra into

Germany. Stifel, in his preface, acknowledges his obligations

to Adam Risen, and professes to have taken all his examples
from Christopher Rudolph. Stifel is believed to have been

the inventor of the symbols -f and — to denote addition and
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subtraction. He introduced also the symbol of evolution, ^,
originally r, the initial of radix or root.

Nicolas Tartaglia, an eminent Italian mathematician, pub-
lished a complete work on arithmetic in 1556. De Morgan
says, "Of this enormous book I may say, as of that of Pacioli,

that it wants a volume to describe it." It consists of two

books, the first containing the application of arithmetic to

common life, the second the foundation of the principles of

algebra.

H. Baker published, in London, 1583, a work entitled "The

Well-spring of Sciences. "Which teacheth the perfect worke

and practise of Arithmeticke." It is one of the books which

break the fall from the " Grounde of Artes," to the commercial

arithmetics of the next century. There are some short rules

for particular cases, and great attention to the rule of practice.

Among the peculiarities of the book is a notion, apparently,

that none but fractions should deal with fractions
;
for Baker

will not double
-f,

for instance, by multiplying by 2, but only by

dividing by ^.

Simon Stevinus published, at Leyden, in 1585, a work which

was edited by Albert Girard in 1634. This work is character-

ized by originality, accompanied by a great want of the respect

for authority which prevailed in his time. For example, great

names had made the point in geometry to correspond with the

unit in arithmetic. Stevinus tells them that 0, and not 1, is the

representative of the point. "And those who cannot see this,"

he adds, "may the Author of nature have pity upon their un-

fortunate eyes; for the fault is not in the thing, but in the

sight which we are not able to give them." A portion of this

work contains,
" Les Tables d' Interest " and " La Disme." The

Disme contains the first announcement of the use of decimal

fractions, and De Morgan thinks that the table of compound
interest suggested decimal fractions.

John Mellis, in 1588, at London, published, "A briefe instruc-

tion and maner how to keepe bookes of Accompts after the
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order of Debitor and Creditor," etc. This is the earliest

English work on book-keeping by double entry, which has ever

been produced. At the end of the book-keeping- is a short

treatise on arithmetic. Mellis says: "TrueJy, I am but the

renuer and reviver of an auncient old copie, printed here in

London the 14 of August, 1543. Then collected, published,

made and set forth by one Hugh Oldcastle, Scholemaster, who^
as appeareth by his treatise then taught Arithmetike and this

booke, in Saint Ollaves parish in Marke Lane."

In 1596, a work entitled,
" The Pathway to Knowledge,"

was published in London, which was a translation from the

Dutch, by W. P. The translator gives the following verses,

of which he is supposed to be the author :

Tliirtie daies hath September, Aprill, June, and November,
Februarie, eight and twentie alone ; all the rest thirtie and one.

Mr. Davies, in his Key to Hutton's Course, quotes the fol-

lowing from a manuscript of the date of 1570, or near it:

Multiplication is mie vexation,
And Division is quite as bad.
The Golden Rule is mie stumbling stule,

And Practice drives me mad.

Cataldi published a work on the square root of numbers at

Bologna, in 1613. The rule for the square root is exhibited in

the modern form, and he shows himself a most intrepid calcu-

lator. The greatest novelty of the work is the introduction of

continued fractions, then, it seems, for the first time presented

to the world. He reduces the square roots of even numbers

to continued fractions, and then uses these fractions in approx-

imation, but without the aid of the modern rule which derives

each approximation from the preceding two.

Richard Witt, in 1613, published a work containing "Arith-

metical questions" on annuities, rents, etc., "briefly resolved

by means of certain Breviats." These Breviats are tables; and

this work is said to be the first English book containing tables

of compound interest. Decimal fractions are really used. The
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tables being constructed for ten million pounds, seven figures

have to be cut off; and the reduction to shillings and pence, with

a temporary decimal separation, is introduced when wanted.

The decimal separator used is a vertical line
;
and the tables

are expressly stated to consist of numerators, with 100... for a

denominator.

John Napier's treatise on arithmetic was published at Edin-

burgh in 1617. This was a posthumous work. It contains a

description of Napier's rods with applications. It is remarka-

ble because it expressly attributes the use of decimal fractions

to Stevinus It also states that Napier invented the decimal

point. De Morgan says this is not correct, since 1993.273 is

written 19932'7"3'".

Robert Pludd, in 1617 and 1619, published a work on math-

ematics at Oppenheim. It contains two dedications, the first,

signed Ego, homo, to his Creator
;
the second, on the opposite

side of the leaf, to James I. of England, signed Robert Fludd.

The first volume contains a treatise on arithmetic and algebra.

The arithmetic is rich in the descriptionof numbers, the Boethian

divisions of ratios, the musical system, and all that has any
connection with the numerical mysteries of the sixteenth cen-

tury. The algebra contains only four rules, referring for

equations, etc., to Stifel and Recorde. The signs of addition

and subtraction are P and M with strokes drawn through them.

The second volume is strong upon the hidden theological force

of numbers.

Albert Girard published a treatise on algebra at Amsterdam

in 1629, which contains a slight treatise on arithmetic. The

arithmetic contains no examples in division by more than one

figure. On one occasion the decimal point is used. Girard

is said to have introduced the parentlieais in place of the vin-

culum, which had been used by Recorde. Wm. Oughtrcd's
Clavis Mathematica, a work on arithmetic and algebra of

great celebrity, was first published in 1631. It retains the

old or scratch method of division which, Dr. Peacock observes,
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lasted nearly to the end of the seventeenth century. He does

not use the decimal point, but writes 12.3456 thus: 12 13456.

The symbol for multiplication, X, St. Andrew's cross, was

introduced by Oughtred. He is also said to have first em-

ployed the symbol : : to denote the equality of ratios.

Nicholas Hunt published, in 1633, "The Hand-Maid to

Arithmetick refined." The book is full on weights and measures,

and commercial matters generally. It does not treat of deci-

mal fractions, however. The author calls "decimall Arith-

ineticke," a division of a pound into 10 primes of two shillings

each; each shilling into six primes of two pence each. It

expresses the rules in verse, of which the following is an

example :

Adde thou upright, reserving every tenne,
And write tlie digits dovvne all with thy pen

Subtract the lesser from the great, noting the rest,

Oi' ten to borrow you are ever prest.

To pay what borrowed was think it no paine,
But honesty redounding to your gaine.

Peter Herigone, in 1634, published at Paris a work entitled

"Cursus Mathematici tomus secundas." It introduces the

decimal fractions of Stevinus, having a chapter "desnonibres de

la dixme." The mark of the decimal is made by marking the

place in which the last figure comes. Thus when ISt livres 16

sous is to be taken for 23 years 7 months, the product of 1378'

and 23583"' is found to be 32497374"", or 3249 liv., 14 sous,

8 deniers.

William Webster published, in 1634, tables for simple and

compound interest. This work treats decimal arithmetic as a

thing known. No decimal point is recognized, only a partition
line to be used on occasion. It contains the first head-rule

for turning a decimal fraction of a pound into shillings, pence,
and farthings. Many other interesting details will be found in

De Morgan's Arithmetical Books, from which much of this

chapter has been drawn.



CHAPTER IV.

ORIGIN OF ARITHMETICAL PROCESSES.

ONE
of the most interesting points connected with the history

of arithmetic, would be a full and complete account of the

genesis of the different divisions and processes of the science.

This, however, is impossible. The origin of the elementary
or fundamental processes dates back before the invention of

printing, and can never be determined. Some of the principal

facts, however, upon this point, in addition to those already

given, will be stated.

Arithmetical Language.—The notation of the nine digits

and zero, upon which the science of arithmetic is based and

developed, originated, as we have already shown, among the

Hindoos, who, however, do not claim to have invented it, but

regard it as a gift of Deity, which is the best proof of its pos-

sessing an antiquity antecedent to all existing records. The

first Arabian author who wrote upon algebra and the Indian

mode of computation is stated, with the common consent of

Arabic authors, to have been Mohammed ben Musa, who flour-

ished about the end of the 9th century ;
an author who is

celebrated as having made known to his countrymen other

parts of Hindoo science, to which he is said to have been very

partial. Before the end of the 10th century, these figures,

which are called Hindasi, from their origin, were in general

use throughout Arabia. The same testimony is repeated in

almost every subsequent author on arithmetic or algebra, and

is completely confirmed by their writing these figures from

left to right, after the manner of the Hindoos, but which is

(41)
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directly contrary to the order of their own writing. The use

of this notation became general among Arabic writers on

astronomy, as well as arithmetic and algebra, about the middle

of the 10th century. We find it in the works of the astrono-

mer, Ebn Younis, who died in the year 1008; and it is found

likewise in all subsequent astronomical tables. From the

Arabs, who, in the 11th century, held possession of the south-

ern provinces of Spain, and had established a flourishing

kingdom, in which the sciences were cultivated with great

zeal and success, the knowledge was communicated to the

Spaniards and other nations of Europe.
The Italians, from an early period, adopted the method of

distributing the digits of a number into groups or periods of

six, and consequently proceeding by millions. This is the

method of numeration given by Lucas di Borgo, 1494. The

method of reckoning by three places, as used in this country
and on the Continent, seems to have originated with the

Spanish. In a work on arithmetic by Juan de Ortega, 1536,

we find the following method of numeration
; 10, dezena; 100,

centeua; 1000, miliar; 10000, dezena de miliar; 100000, cen-

tena de miliar
; 1000000, cuento. The term 7n27h'on, however,

had not yet been introduced, a,nd it has not been fully ascer-

tained at what time this introduction took place. Bishop

Tonstall, 1522, in discussing the Latin nomenclature of num-

bers, spdaks of the term million as in common use, but rejects

it as barbarous, being used only by the vulgar; and Dr.

Peacock remarks that by the vulgar he may have meant the

arithmetical writers of England and other countries.

Stevinus divided numbers into periods of three places, called

each period mevibres, and distinguished them as le premier
membre, le seconde membre, etc. Instead of million he says
mille mille; for a thousand million he uses viille mille niille ;

and for a million million he uses mille mille mille mille. It

would appear from the practice of Stevinus, and from the

ob.servation of his contemporary, Clavius, that the term million
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was not at this time in general use amongst mathematicians.

Albert Girard divides numbers into periods of six places, which

he terms premiere masse, seconde masse, troisieme masse, etc.,

the first of which only is divided into periods of three places
each

;
but he does not use the word million. The term, how-

ever, was introduced into Kecorde's arithmetic, and subse-

quently appeared in all succeeding English authors. It appears
to have been admitted into German works much later than into

the French and English. Ksestner says he found it in no

German author on arithmetic in the first half of the IGth cen-

tury ;
and Clavius is the first writer of that nation who has

noticed the term, though he does not seem to have carried the

innovation further, since he expresses billions by milliones

millionum, which is the highest number he has occasion to

use.

Fundamental Operations.—The fundamental operations

of arithmetic were, without doubt, invented by the Hindoos

at a very early period. The work from which our knowledge
of Hindoo arithmetic has been mainly derived, is the Lilawati

of Bhascara, who lived about the middle of the 12th century.

The work is named after the author's daughter, Lilawati, who,
it appeared, was destined to pass her life unmarried and re-

main without children. The father, however, having ascer-

tained a lucky hour for contracting her in marriage, left an

hour-cup on a vessel of water, intending that when the cup
should subside, the marriage should take place. It happened,

however, that the girl, from a curiosity natural to children,

looked into the cup to see the water coming in at the hole,

when, by chance, a pearl separated from her bridal dress, fell

into the cup, and rolling down to the hole, stopped the influx

of water. When the operation of the cup had thus been

delayed, the father was in consternation; and, examining, he

found that a small pearl had stopped the flow of the water,

and the long expected hour was passed. Thus disappointed,

the father said to his unfortunate daughter, "I will write a
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book of your name, which shall remain to the latest times.—
for a good name is a second life, and the groundwork of eter-

nal existence."

This work frequently quotes Brahmegupta, an author who
is known to have lived in the early part of the 7th century,

and portions of whose works, containing treatises on arith-

metic and mensuration, are still extant. Brahmegupta also

refers to an earlier author, Arya-bhatta, who wrote an algebra
and arithmetic, at least as early as the 5th century, and proba-

bly at a much earlier period, and who is considered the oldest

of the uninspired and merely human writers among the

Hindoos. It is thus clear, that Hindoo algebra and arithmetic

are at least as ancient as Diophantus, and preceded, by four

centuries, the inti'oduction of these sciences among the Arabs
;

and it is equally clear, that the Arabs obtained their knowledge
of the sciences from the Hindoos, and by means of their

schools and universities aided in introducing them to the schol-

ars of Europe. In tracing the history of the operations of

arithmetic, we must therefore begin with the Lilawati.

The fundamental operations of arithmetic, as given in the

Lilawati, are eight in number; namely, addition, subtraction,

multiplication, division, square, square root, cube, cube root.

To the first four of these the Arabs added two, namely, dupla-
tion and mediation or halving, considering them as operations
distinct from multiplication and division, in consequence of

the readiness with which they were performed; and they

appear as such in many of the arithmetical books in the 16th

century.

Addition.—The rule given in the Lilaxoati for addition is as

follows: "The sum of the figures, according to their places, is

to be taken in the direct or inverse order, "which is interpreted
to mean, "from the first on the right towards the left, or from

the last on the left towards the right." In other words, they
commenced indifferently with the figures in the highest or low-

est places, a practice which would not lead to much incon-
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venience in their mode of working. Thus, to add 2, 5, 32, 193,

18, 10, 100, they proceed as follows:

Sum of the units, 2, 5, 2, 3, 8, 0, 0, 20

Sura of the tens, 3, 9, 1, 1, 0, 14

Sum of the hundreds, 1, 0, 0, 1, 2

Sum of the sums, 360

Subtraction.—The process of subtraction was also com-

menced either at the right or the left, but much more commonly
at the latter; and it is remarkable that this method of begin-

ning to subtract at the highest place, which is subject to

considerable inconvenience, should have been so general. It

is found in Arabic writers, in Maximus Planudes, a Byzantine
writer of about the middle of the 13th century, and in many

European writers as late as the end of the 16th century.

In Planudes, numbers to be added or subtracted are placed

one underneath another, as in modern works on arithmetic
;

and the sum or difference is written above these numbers.

When a term in the subtrahend is greater than the correspond-

ing one in the minuend, a unit is written beneath them, as in

the example in the margin.
In performing the operation, 3 is increased 18769 rem.

by the unit in the next place to the right, and 54612 mm.

also 5, 8, 4, and the terms thus increased are , , , ,

subtracted from the terms above, increased by
10, to find the remainder.

In other cases, the numbers are arranged, as 06779 rem.

inthemargin, the digits 3, 0, 0, 2 in the minuend ^^^^

I
• ? ^ u o o n 1 A .u K • 30024 min.

bemg replaced by 2, 9, 9, 1, and then 5 is
23945 sub

subtracted from 4, 4 from 1, 2 from 9, 3 from

9, and 2 from 2, in order to get the remainder. It is obvious,

that when such a preparation is made, it is indifferent where

we commence the operation.

Bishop Tonstall attributes the invention of the modern

practice of subtraction to an English arithmetician of the name

of Garth. This method he has illustrated with great detail,



46 THE PHILOSOPHY OF ARITHMETIC.

and added, for the assistance of the learner, a subtraction table,

giving the successive remainders of the nine digits when sub-

tracted from the series of natural numbers from 11 to 19 inclu-

sive, the only cases which can occur in practice.

In speaking of the methods of preceding writers, 2 9 10 10

he has presented the example in the margin, in 3 10
which it will be seen that the numbers from

which the subtraction is actually made, are l o 9 J

placed above the terms of the minuend.

In the arithmetic of Ramus, which was published in 1584,

though written at an earlier period, we find the operation

performed from left to right, and this method is followed

by some other writers. Thus, in subtracting 345 from gY

432 the terms to be subtracted and the remainder are ^32
written as in the margin. When 3 is subtracted from f>-^P

4, the remainder should be 1
;
but it is replaced by zero,

since the next term in the subtrahend is greater than the corres-

ponding term of the minuend
;
in the second term the remainder,

which should be 9, is reduced to 8, since 5, the next term of

the subtrahend, is greater than 2, the term above it, but the

last remainder 7, is not changed.

Orontius Fineus, the predecessor of Ramus in the professor-

ship of Mathematics at Paris, in his De Arithmetica Practica,

1555, subtracts according to the method now used
;
and it is

difficult to account for the adoption by Ramus of so inconven-

ient a method as he employed, when the method of Fineus

must have been familiar to him, unless we attribute it to that

love of singularity which led him to aspire to the honor of

founding a school of his own.

Multiplication.—The author of Lilawati has noticed six

different methods of multiplying numbers, and two others are

mentioned by his commentators. These may be illustrated by
their application to the following example: "Beautiful and

dear Lilawati, whose eyes are like a fawn's, tell me what are

the numbers resulting from one hundred and thirty-five taken
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The woi'k of Planudes was chiefly collected from the Arabic

writers, as appears from his being acquainted with the

method of casting out 9's. In multiplication he has
^, -^

chiefly followed the method of multiplying crosswise or 35
Kara rov xiaa/iov, from the figure X, which is employed to a'

connect the digits to be multiplied together. Thus, in 24

multiplying 24 into 35, we should write the factors as in

the margin ;
and then multiply 4 into 5 (/^ovackc)^ write down and

retain 2 for the next place ; multiply 4 into 3, and 3 into 5, the

sum is 22, which added to 2, makes 24 (f^e/caJef)^ write down 4

and retain 2
; lastly, multiply 2 into 3, add 2, which makes

8 (e/ca-ovratJec), and the product is 840. He also gives another

method which he acknowledges to be very difiScult to per-

form with ink upon paper, but very commodious on a board

strewed with sand, where the digits may be readily

effaced and replaced by others. Thus, taking the same ^^'^

example, we multiply 2 into 3, write 6 above the 3; ,^
multiply 2 into 5, the result is 10

;
add 1 to 6, and o 5

.replace it by 7, or write Y above it; multiply 4 into 3, 2 4

the product is 12; write 2 above 5, and add 1 to 7,

which is replaced by 8, or 8 written above it; lastly, multiply
4 into 5, the result is 20

;
add 2 to 2, place 4 above it and after

it the cipher ;
the last figures, or those which remain without

accents, will express the product required.

Division.—The extreme brevity with which the rules of

division are stated in the Lilawati renders it difiicult to

describe the Hindoo method of dividing numbers. We are

directed to abridge the dividend and divisor by an equal,

number, whenever that is practicable ; that is, to divide them

both by any common measure
; thus, instead of dividing 1620

by 12, w^e may divide 540 by 4, or 405 by 3. We find, how-

ever, in one of the commentators on this work, a description

of the process of long division, which, if exhibited in a scheme,

would exactly agree with the modern rule

Italian Methods.—The Italians, who cultivated arithmetic

4
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with so much zeal and success, from a very early period

adopted from their Oriental masters many of their processes
for the multiplication and division of numbers

; adding, how-

ever, many of their own, and particularly those which are

practiced at the present time. In the Sumtna de ArUJi7netica

of Lucas di Borgo, we find eight different methods of multi-

plication, some of which are designated by quaint and fanciful

names. We shall mention them in their order.

1. MuUiplicatio : bericuocoli e schacherii. The second of

these names is derived from the resemblance of the written

process to the squares of a chess-board
;

the first from its resemblance to the check-

er's on a species of sweetmeat or cake,

made chiefly from the paste of hacochi or

apricots, which were commonly used at

festivals. The process is exhibited in the

margin. This method is presented by

Tartaglia and later Italian writers with- 17 2 3 6 8

out the squares; and it thus became the

method which is now universally used, and which was adopted

from the beginning of the 16th century by all writers on arith-

metic, nearly to the exclusion of every other method.

2. Gastelluccio ; by the little castle. This

method, as indicated in the margin, uses the 9876

upper number as the multiplier, and begins with
^ '
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ducts of all numbers less than 100 into each other. Pacioli

says that these tablets were learned by the Florentines, and

their familiarity with them was considered by him as a princi-

pal cause of their superior dexterity in arithmetical operations.

This method is used in multiplying any number, however large,

into another which is within the limits of the table. Thus, to

multiply 4(385 by 13, the terms of the multiplicand are multiplied

successively by 13, and the results formed

in the ordinary manner.

4. Grocetta sive casella ; by cross multi-

plication. This method is said to require

more mental exertion than any other, par-

ticularly when many figures are to be

combined together. Pacioli expresses his

admiration of this method, and then takes 2 7 9 3 6

the opportunity of enlarging on the great difficulty of attaining

excellence, whether in morals or in science, without labor.

5 4

4

3

3

16 2 9
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noticed, which was in common use among the Hindoos, Ara-

bians, and Persians.

7. Ripiego ; multiplication by the unfolding or resolution

of the multiplier into its component factors; Thus, to multiply

157 by 42, resolve 42 into its ripieghi or factors, 6 and 7, and

multiply successively by them.

8. Scapezzo ; multiplication by cutting up,
or separating the multiplier into a number of

parts, which compose it by addition. Thus,
to multiply 2093 by 17, we separate 17 into

10 and 7, multiply by each, and take the sum
« ., 1 X T 1 ., ,. 30 60 90 180

of the products. In some cases both multi-

plicand and multiplier were separated into parts. Thus, the

multiplication of 15 by 12 was perfoniued as in the margin.
In another Italian arithmetic, published in 1567, by Pietro

Cataneo Sienese, we find the same distinctions preserved, and

the same names, or nearly so, attached to them
;
the method of

cross multiplication is expressly attributed to Leonard

of Pisa, who derived it, in common with Maximus ^ ^

X
Planudes, from the Hindoos, through the Arabians. /l

It is not impossible that St. Andrew's cross, which

4,
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The Hindoos, as has been stated, had no proper knowledge
of the multiplication table, and the Arabs do not appear to

have made use of the table of Pythagoras as the basis of their

arithmetical education; the credit of introducing it, therefore,

is due to the early Italian writers on the science, who probably
found it in the writings of Boethius, and adopted it thence.

Even after the Italian arithmeticians were familiar with this

table, many writers of other countries considered it important
to relieve the memory from the labor of retaining it for the

products of all digits exceeding 5, by giving rules for their

formation. The principal rule for this purpose, called regula

ignavi, or the sluggard's mile, was adapted from the Arabians,
and is found in Orontius Fineus, Recorde, Laurenberg, and

most other writers between the middle of the 16th

and 17th centuries. The rule is as follows: Sub- 7 3 8 2 91
tract each digit from 10, and write down the XXX
difference ; multiply these differences together, j^ _^ °^
and add as mamj tens to their product as the ^^ ^^ "^2

Jirst digit exceeds the second difference, or the

second digit the first difference. The Arabians made use of

this and other similar rules which applied to numbers of two

places of figures, a practice which may be accounted for by
their very general use of sexagesimals, and the consequent

importance of being able to form the products which are found

in a sexagesimal table.

Many other expedients were proposed to relieve the mem-

ory, in the process of multiplication, from the labor 5142
of carrying the tens. An interesting one is pre- 43
sented by Laurenberg, an author who endeavored ~To&
to elevate the character of the common study of 1532

arithmetic by collecting all his examples from clas- 1^^^

sical authors, and by making them illustrative of "

the geography, chronology, weights and measures -^21106

of antiquity. It will be understood from the example given,

without explanation.
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Division.—Neither Planudes uor the early Arabic writers

seem to have presented any methods of dividing that merit the

special notice of the writers 9n the history of arithmetic.

Lucas di Borgo gives four distinct methods which we proceed
to explain. These methods had particular names, as in mul-

tiplication.

1. Partire a regolo, sometimes called also partire per testa

or division by the head, was used when the divisor was a

single digit, or a number of two places, such as 12,

13, etc., included in the lihrettine or Italian tables 6

of multiplication. The method will be readily 3478

understood from the example given. Di Borgo says: ^*^is
" This method of division is called by the vulgar, the

rule, from the similitude of the figure to the carpenter's rule

which is made use of in the making of dining-tables, boxes,

and other articles, which rules are long and narrow."

2. Per ripiego ; which consists in resolving

the divisor into its simple factors, or ripieghi. ocaa?^
It will be readily understood from the example q ^f^YQi

given, and be recognized as a common method of 3969
modern arithmetics.

3. A danda ; which the author says is thus called for rea-

sons which will be readily seen in the opera-

tion itself, which represents the division of

230205 by 357, giving a quotient of 645.

The process is the same as our common
method of long divisiou, only the numbers

are not so conveniently written. It was
called a danda, or by giving, because after

every subtraction we give or add one or

more figures on the right hand. The author,

however, prefers the next method.

4. Galea vel galera vel batello ; so called from the process

resembling di galley, "the vessel of all others most feared on

Divisor. Pi
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the sea by those who have good kuowledge
of it; the most secure and swiftest; the most 8^

rapid and lightest of the boats that pass on
ir'>/)i

the water. " The method may be illustrated y7n^5399C9
by dividing 97535399 by 9S76. We first

1)^|'0

write the dividend, and underneath it the

divisor, and commence with the second figure of the dividend,

since the divisor is not contained in the first four terms of the divi-

dend. Multiplying the divisor by the first term

of the quotient, 9 times 9 are 81, which sub- 86

tracted from 97 leaves 16, which is written r^/'^

above 97
;
then cancel 97 and 9 in the divi-

crr^ronq/qa
sor

;
9 times 8 are 72, which taken from 165, 9S7ti6

leaves 93; write 9 above 16 and 3 above 5 987

in the dividend, and cancel 165, and 8 in

divisor
;

9 times 7 are 63, which subtracted from 933 leaves

870; cancel 933 in remainder, and 7 in divisor; 9 times 6 are

54, which subtracted from 705 leaves 651
;

cancelling 705, and 6 in the divisor, we have ^^
as a remainder 8651399. For multiplying /^i^

by the second quotient figure, we arrange -» I'-M
the divisor as in the margin, and proceed as St^jrw9
before. The complete operation is repre- 97p^^5
sented by the last work in the margin, and }^>f>^^]i^/lS

is so apparent that it needs no further expla- j)-^ppppf>f>{^^lQ

nation.
98777

Tartag-lia states that it was the custom in </

Venice for masters to propose to their pupils 9

as the last proof of their proficiency in this

process of division, examples which would produce the com-

plete form of the galley, with its masts and pendant. The

last addition to the work was supplied by the scheme for the

proof of the accuracy of the operation by casting out the

9'3. Dr. Peacock gives an example showing the numbers
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thus arranged, which is very curious, but too long for insertion

here.

The same process is illustrated by an example ,
-,

,

from the numerous calculations by Regiomon- 3134 1

tanus, in his tract on the quadrature of the 154750 i4

circle, written as early as 1464, though not 276548 3

published until 1532. The question proposed ^f}?;!??
^

is to divide 18190735 by 415. The divisor is 41111

placed under the dividend and repeated at 444

every step backward, and all the figures erased
43333

in succession. The quotient, 43833 is placed

down the side and along the bottom, the remainder 40 being the

only digits left on the board.

It is amusing to observe the enthusiastic admiration of Di

Borgo for this method of division. When describing the pre-

ceding method he seems impatient, and looks forward with

pleasure to the description of the method a la galea, as pos-

sessing a certain charm and solace, remarking that it is a

noble thing to see in any species and scheme of numbers, a

galley perfectly exhibited, so as to be able to observe its mast,

its sail, its yards and its oars, launched in the spacious ocean

of arithmetic. This method, we are surprised to learn,

appears to have been preferred by nearly every Avriter on

arithmetic as late as the end of the 17th century. It was

adopted by the Spaniards, French, Germans, and English; and

it is the only method which they have thought necessary to

notice. It is found almost universally in the works of Tonstall,

Recorde, Stifelius, Ramus, Stevinus, and Wallis
;
and it was

only at the beginning of the 18th century that this method of

division, called by the English arithmeticians the scratch

method of division, from the scratches used in cancelling the

ligures, was superseded by the method now in common use,

which was specifically called Italian division, from the country

whence it was derived.
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Recorde noticed the Italian method of 33)7890(239^\
division, which, he says, "I first learned 66

of, and is practiced by my ancient and espe- ^^
cial lovinff friend. Master Henrv Bridges,"

300
wherein not any one figure is cancelled or ^q^
defaced. He illustrates the method by an x

example which we subjoin ; though, as before

stated, he preferred the scratch method of dividing.

Powers and Roots.—The author of the Lilawati has given
rules for the formation of squares and cubes, as well

as for the extraction of the corresponding roots.
*

The rule for the formation of the square, which is
gi

very ingenious, is as follows: Place the square of 28

the last digit over the number, and the rest of the 126

digits doubled and multiplied by the last are to be ^^

placed above them respectively ;
then repeating the ^^t

number w^ith the omission of the last digit, perform
88209

the same operation. This is illustrated in squaring the num-

ber 297.

In performing the converse operation, every uneven place is

marked by a vertical line, and the intermediate digits by a

horizontal one
;
but if the place be even, it is joined

with the contiguous odd digit. It may be illus-
—

i
— '

trated by extracting the square root of 88209,
8 8 2 9

enough of the work being indicated to show the 4 8 2 9

nature of the method. We subtract from the last
i

uneven place, 8, the square 4, and there remains 12 2 9

48209, represented as in the margin. Double the
—

'

4 10 9
root 2, making 4, and divide 48, the number de-

' ° etc.
noted by the next two terms, by the result,

obtaining 9 (10 would be too large), and subtracting 9 times 4

or 36, we have 12209. From the uneven place, with the resi-

due, 122, subtract the square of 9, or 81
;
the remainder is

4109 Double 9, giving 18, and unite the result with 4, giving

58, and divide 410 by it, and we have 7, and the remainder,
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49, to which the square of the quotient *!, or 49, answers with-

out a residue. The double of the quotient, 14, is put in a line

with the preceding double number, 58, making 594, the half

of which is the root sought, 297.

This account of the Hindoo method of extracting square

root, is taken from the commentators on the Lilawati, and does

not differ essentially from the method now used
;
and the same

may be said of the method of extracting the cube root, the

principal difference from the present method being found in

their peculiar methods of multiplying and dividing.

The method of extracting the square root used by the Ara-

bians resembled their method of division
;
and it is prob-

able that they are both founded on

the Greek methods of performing these

operations with sexagesimals. The

example given will show the form of

operation. Vertical lines being drawn

and the numbers distinguished into

periods of two figures, the nearest root

of 10 is 3, which is placed both below

and above, and its square, 9, subtracted ;

the 3 is now doubled, and 6 being writ-

ten in the next column, is contained

twice in IT, or the remainder with the

first figure of the next period ;
the 2 is

therefore set down both above and

below, and being multiplied into 6

gives 12, which is subtracted from 17,

leaving 5
;
the square of 2, or 4, is now

subtracted from 55, and 518, the re-

mainder, with the succeeding figure, is

divided by 64, or the double of 32, giving 8 for the quotient ;

then 8 times (34 are 512, which, subtracted from 618 leaves 6',

and 64 is exhausted by taking from it the square of 8. It is

said that this mode was adopted from the Arabs by the Hindoos.
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P2416
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4(304

~2416

00

The earlier mathematicians of Europe employed a similar

method of extracting the square root, though perhaps not quite so

systematic and regular. In proof of the rule which they followed,

they constantly refer to the 4th proposition of the 2d book of

Euclid. I will give several examples illustrating their methods.

The first is from the arithmetic of Pelletier,

the first edition of which was published in

1550. It represents his method of extract-

ing the square root of 92416, and is so sim-

))Ie it needs no explanation.- It will be seen

that the dots marking the periods into which

the number is separated are placed under the number, instead

of above it as is now the custom.

The second example is from the work of

Lucas di Borgo, and is in the form of the

process which was most commonly adopted.
The example, as will be seen, is the extrac-

tion of the square root of 99980001. The

scheme will require no explanation, but will

be readily understood by those who are fam-

iliar with the galley form of division.

We present another illustration taken from the tract, already

mentioned, of Regiomontanus. The question is to find the

square root of the number 5261216896.

Now the nearest square to 52 is 49, leaving

3 to be set above the 2, while 1, the root, is

placed in the vertical line
;
then double of

7, or 14, being set under the 36, is contained

twice, and 2 is accordingly placed under the

1
;

but twice 1 is 2, which taken from 3

leaves 1, and twice 4 are 8, which taken

from 6, or 16, leaves 8, and extinguishes the

1 before it
;
and twice 2 are 4, which taken

from 1, or 11, leaves 7, and converts the pre-

ceding 8 into 7. In this way the process advances till the

^^P^ppp;(9999

123

2465
1757174
38796595

5261216896
14406
430
145
14

1

72534
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figures become successively efifaced. The root, 72534, is placed
both at the right hand side and also immediately below the

work. The divisors do not appear to be right, but we do not

feel sufficiently acquainted with the subject to change them, and
do not possess the original work by which we can verify them.

The method of extracting cube root used by the Arabians and

Persians, and by them communicated to the

Hindoos, resembles likewise their method * 5

of performing division. We will illus-

trate it by extracting the cube root of

91125. Having drawn the vertical lines

as indicated, the several digits of the num-

ber are inscribed between them, and dots

set over the first, fourth, seventh, etc.,

reckoning from the right. The nearest

cube to 91 is 64, which is set down and

subtracted, leaving 2t. To obtain the

next term of the root, 3 times 16, which

is 3 times the square of the root found, is

written below, and being contained 5

times in 211, the divisor is completed by

adding 3 times the product of 4 and 5, or

60, and then the square of 5, or 25, mak-

ing in all 5425, each term of which is

multiplied by 5, and the products sub-

tracted in succession.

The ancient mode of extracting the cube root practiced in

2

Europe was similar to the process

just explained, but not so regular

and formal. The annexed example
is taken from the Ars Supputandi
of the famous Cuthbert Tonstall,

Bishop of Durham, the earliest

treatise on arithmetic published in

England, and a work of no common
merit. The number 250523582464,

4' 1'Q'

3'* 4'0'*

2'5'0*5'2'3'5'8'2'4'6'4'

6

3'4'1'8'7'8'9'8'9'0'4'

1'0'2'1'5'9'

1'2'2'5'1' 0'

4'9'6' 8'2'4'6'

7'
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whose root is to be extracted, is placed above two parallel

lines, between which the root 6304 is inserted
;
the successive

divisors and the corresponding remainders being written alter-

nately below and above, and the figures erased as fast as

the operation advances, the operation of erasure being here

denoted by accents.

Stifelius, who usually sought to generalize the methods of

his predecessors, has considered the process of extracting the

square root in connection with those of higher powers. By

observing the formation of the powers themselves, he discovered

certain schemes, or pictures as he calls them, for extracting the

square, cube, biquadrate, etc., roots. If we indicate the terms

of a binomial root by a and h, his scheme for the square root

would consist of a-20-6 and 6' written under the h to denote

addition. The meaning of the scheme is
^

that in extracting the square root, the first ^7^;3^P/(2601

term, a, must be multiplied by 20 to get
2 - 20 - 6.

the divisor from which we determine the . . . . ^ ^
Jib — M yj—\i

second term, h
;
after which the sum of 2-60-20 1

the product of a, 20, and h, and &' must 1-5201

be subtracted from the first remainder.

His method is illustrated by the extraction of the square root

of 6165201, as here given.

The history of the origin of these arithmetical processes is

derived from Prof. Leslie and Dr. Peacock, much of it having
been copied word for word from the originals. The origin of

methods in Fractions, Decimals, Rule of Three, Continued

Fractions, etc., will be given in connection with those subjects;

and such other historical information as it is thought will be

of interest to the reader will be presented in its appropriate

place. Occasionally the same fact is repeated, in order to give

a completeness to the particular subject discussed.
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CHAPTER I.

NUMBER, THE SUBJECT MATTER OF ARITHMETIC.

NUMBER
was primarily a thought in the mind of Deity.

He put forth His creative hand, and number became a fact

of the universe. It was projected everywhere, in all things,
and through all things. The flower numbered its petals, the

crystal counted its faces, the insect its eyes, the evening its

stars, and tlie moon, time's golden horologe, marked the months
and the seasons.

Man was created to apprehend the numerical idea. Finding
it embodied in the material world, he exclaimed, with the enthu-

siasm of Pythagoras, "Number is the essence of the universe,

the archetype of creation." He meditated upon it with enthu-

siasm, followed its combinations, traced its relations, unfolded

its mystic laws, and created with it a science^—the beautiful

science of Arithmetic. Let us consider the origin and nature

of the idea out of which man has created this science of exact

relations and interesting principles.

Origin.—The conception of number begins with the contem-

plation of material objects. Objects are found in combinations

or collections, and the inquiry, how many of such a collection,

gives rise to the idea of number. The young mind looks out

upon nature, communes with its material forms, sees unity and

plurality, the one and the many, all around it, Efnd awakens to

the numerical idea. Strange law of spiritual development!
the material thing calls into being the immaterial thought.

The unity and plurality, as it dwelt in the God-mind and was

(67)
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embodied in the material world, passes over to the mind of

man, and appears as an idea of the immaterial spirit.

The idea of definite numbers is developed by a mental act

called counting. We ascertain the how-many of a collection,

by counting the objects in the collection. The act of counting,

{one, two, three, etc.), is the foundation of all our knowledge
of number. In counting, we pass in succession from one

object to another. Succession implies time, and is only possi-

ble in time. The idea of number, therefore, has its origin in

the fact of time, and is possible only in this great fact. A brief

consideration of this relation w^ill not be uninteresting.

Time is one of the two great infinitudes of nature. Space
and Time are the conditions of all existence. Time enables

us to ask the question, when ; Space, the question, where.

Space is the condition of matter regarded as extended, and is

thus the condition of extension. Extension has three dimen-

sions, length, breadth, and thickness. The science of extension

is geometry. Space is thus seen to be the basis or condition

of the science of geometry.
Time is the condition of events, as Space is of objects.

Every event exists in Time, as every object must exist in Space.

Time has somewhat the same relation to the world of mind,

that Space has to the world of matter. Matter extends in

Space, as mind protends in Time. This intimate relation of

Number and Time leads me to present a few thoughts concern^

ing the nature of Time, and the development of the idea of

Number from it.

Time is not a mere abstraction. It is not a quality per-

ceived in an object and drawn away from it by the power of

abstract thought, and conceived as an abstract notion. Neither

is it a general idea, or a concept. We do not first get partic-

ular notions of Time, and then, by putting these together, form

a general idea of it. No summation of particular times can

give the grand, unlimited idea of Time that the mind possesses.

Indeed, we do not consider particular times as examples of
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Time in general ;
but we conceive all particular times to be

parts of a single endless Time. This continually flowing
and endless time is what ofi'ers itself to us when we contem-

plate any series of occuiTences. All actual and possible

tiynes exist as parts of this original and genera. Time. There-

fore, since all particular times are considered as derivable from

time in general, it is manifest that the notion of time in general,

cannot be derived from the notions of particular times.

Time is a grand intuition. It is an idea which is formed in

the mind when the proper occasion of sensible experience is

presented. Sensible experience is not the cause, but the occa-

sion upon which the mind conceives or originates this idea.

It is the product of the higher intuitive power known as the

Reason. But Time is not only an idea, it is a great reality. It

has a real objective existence, independent of the mind which

conceives it. Were there no minds to conceive it, time would

still exist as the condition of events. Were all events blotted

out of existence, time would remain an endless on-going.

Time is infinite. No mind can conceive its beginning ;
no

mind can conceive its end. All limited times merely divide,

but do not terminate the extent of absolute time. In it every

event begins and ends, while it never begins and never ends.

It is, in its very nature, like Him who inhabiteth eternity, with-

out beginning and without end.

Time gives rise to succession, as space does to extension.

Out of succession grows the idea of Number, and the science of

Number is Arithmetic. Arithmetic, therefore, has somewhat the

same relation to time, that geometry has to space. In view of

this fact, some philosophers have called geometry the science

of space, and arithmetic the science of time. This view of

arithmetic, however, has not been adopted by all writers, since

there are other ideas growing out of time than that of number.

Wheweil, in writing of the Pure Sciences, speaks of the three

great ideas— Space, Time, and Number ; thus distinguishing

between Number and Time. Several efforts have been made
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to construct a science of Time; the most remarkable is that of

Sir William Kowan Hamilton, which resulted in the invention

of the wonderful Calculus of Quaternions.

Time is considered as having but one dimension. In this

respect it differs from Space, which has three dimensions,

length, breadth, and thickness. Time may be regarded as

analogous to a line, but it has no analogy to a surface or a vol-

ume. Time exists as a series of instants which are before and

after one another
;
and they have no other relation than this

of before and afte7\ This analogy between Time and a line

is so close, that the same terms are applied to both ideas, and

it is difficult to say to w^hich they originally belonged. Time

and lines are called long and short; we speak of the beginning

and the end of a line, of a point of time, and of the limits of a

portion of duration.

There being nothing in Time which corresponds to more

than one dimension of extension, there is nothing which bears

anv analogy with figure. Time resembles a line extending

indefinitely both ways ;
all partial times are portions of this

line
;
and no mode of conceiving time suggests to us a line

making an angle with the original line, or any other combina-

tion which might give rise to figures of any kind. The anal-

ogy between time and space, which in many circumstances is

so clear, here disappears altogether. Spaces of two and of

three dimensions, surfaces and volumes, have nothing to which

we can compare them in the conceptions arising out of time.

The conception which peculiarly belongs to iivote, as figure

does to space, is that of the recurrence of times similarly

marked. This may be called rhythm, using the word in a

general sense. The forms of such recurrence are noticed in

the versification of poetry and the melodies of music. All

kind.s of versification, and the still more varied forms of recur-

rence of notes of diflerent lengths, which are heard in all the

varied strains of melodies, are only examples of such modifica-

tions or configurations, as we may call them, of time. They
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involve relations of various portions of time, as figures involve

relations of various portions of space. But yet the analogy
between rhythm and figure is by no means very close

;
for in

rhythm we have relations of quantity alone in parts of time,

whereas in figure we have relations not only of quantity, but

of a kind altogether different—namely, of position. On the

other hand, a repetition of similar elements, which does not

necessarily occur in figures, is quite essential in order to

impress upon us that measured progress of time of which we
here speak. And thus the ideas of time and space have each

their peculiar and exclusive relations; position and figure

belonging only to space, while repetition and rhythm are ap-

propriate only to time.

One of the simplest forms of recurrence is alternation, as

we have alternate accented and unaccented syllables. For

example :

" Come one'', come aW, this rock'' shall fly^."

Or without any subordination, as when we reckon numbers,

and call them in succession, odd, even, odd, even, etc.

But the simplest of all forms of recurrence is that which

has no variety, in which a series of units, each considered as

exactly similar to the rest, succeed one another; as one, one,

one, and so on. In this case, however, we are led to consider

each unit with reference to all that have preceded ;
and thus

the series one, one, one, and so forth, becomes one, two, three,

four. Jive, and so on; a series with which all are familiar,

and which may be continued without limit. We thus collect

from that repetition of which time admits, the conception of

Number.

This conception of the origin of Number out of the idea of

Time is now accepted by the philosophical world as correct.

The subject is so happily treated by Whewell that I have

taken the liberty of adopting some of his language in the above

statement.
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DEFINITION OF NUMBER.

THE
idea of number is so elementary that it is difiBcult to

define it scientifically. Various definitions have been pre-

sented by different writers upon the subject, though no one

has hitherto given one which is, in all respects, satisfactory.

The two most celebrated definitions are those of Newton and

Euclid, both of which will be briefly considered.

Newton defined number as "the abstract ratio of one quan-

tity to another quantity of the same species." This definition

is philosophical and accurate. It shows number to be a pure
abstraction derived from a comparison of things. In discrete

quantity, it regards one of the individual things as the unit of

comparison ;
while in continuous quantity the iinit is assumed

to be some definite portion of the quantity considered.

This definition was no doubt primarily intended to apply to

extended quantity, in which there is no natural unit, but in

which some definite portion of the quantity is assumed as a

unit of measure, and the quantity estimated by comparing it

with this unit as a standard. Such comparison gives rise to

three kinds of numbers
; integral, fractional, and surd numbers.

When the quantity measured contains the unit a definite

number of times, the number is integral ;
when it is only a

definite part of the measure, the number is fractional
;
when

there is no common measure between the unit and the quan-

tity measured, the number is a surd or radical.

The definition of Newton, though admirable in many
respects, is noi suitable for popular use. It is too abstract and

(
72 )
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difficult to be understood by young pupils ;
and cannot, there-

fore, be recommended for our elementary text-books. It may
be said, also, that it does not express clearly the process of

thought by which we attain the idea of number. It is more

appropriate as applied to continuous than to discrete quantity,

while the idea of number begins with discrete rather than con-

tinuous quantity. In this latter respect it may possibly be

improved by changing the form of expression, while retaining

its spirit: thus, A niLmher is the relation of a collection to the

single thing. This is simpler than the original form, and is in

many respects a very satisfactory definition.

p]uclid defined number to be "an assemblage or collection of

units or things of the same species." This definition, slightly

modified, has been generally adopted by mathematicians. In

its original form it excluded the number one, since one thing is

not an assemblage or collection, and hence.it has been changed
to read—A number is a unit or a collection of units. This is

the definition which is now found in a large number of text-

books.

This definition, however, is not strictly correct. A number

is not precisely the same as a collection of units, and a collec-

tion of units is not necessarily a number. In other words,

there is a difference between a collection of things and a num-

ber of things. This may be more clearly seen by the use of

the corresponding verbs. To collect and to number are two

different things. We may collect without numbering, and we

m.2ij number without collecting; I may collect a, number of

things, and I may number a collection of things. If a basket

of apples were strewn over the floor and I were told to collect

them, I might do so without numbering them
; or, if told to

number them, I might do so without collecting them. In the

latter case I would have a number of apples without having a

collection of apples, except the mental collection, from which it

appears that a number is not precisely the same as a collection.

Number is more definite than collection. A collection is an
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indefinite thing, numerically considered
;
number is that which

makes it definite. Number and collection are not, therefore,

ideuti(!al. Number is rather the how maynj of the collection.

It is thus seen that Euclid's definition, as modified and now
introduced into most of our text-books, is not without scien-

tific objections. It must be admitted, however, that there is

no other one word which so nearly expresses the idea of the

word number as collection; and, for ordinary purposes, they

may be used interchangeably. Thus we may say, in analysis,

we pass from the collection to the single thing ; from Q,number

to one. It is, therefore, regarded as the best definition for the

ordinary text-book, that has hitherto been presented.

From this discussion it will appear, as above stated, that it

is difficult to present a good definition of Number. This diffi-

culty is due to the fact that Number is a simple term express-

ing a simple idea, for which we have no other word of

precisely the same signification. Simple terms are always
difficult to define, from the very fact that they define themselves.

Indeed, perhaps there is nothing in the way of a definition of

number clearer than the identity
— "A Number is a Number."

The following, though liable to a verbal objection, seems to me
to come as near the truth as anything that has yet been pre-

sented: A Number is the how-many of a collection of units;

or, A Number is hoiv many times a single thing is reckoned, or

is contained in a collection.

The first excludes the number one, unless, as some writers

propose, we give a special signification to collection. The
second provides for the number one, but is not, in other respects,

so satisfactory as the first. These definitions express pre-

cisely the idea of a number, but the use of the expression how

many as a noun, is not elegant in the English language. The

simplest and most satisfactory definition for a text-book is,

" A Number is a unit or a collection of units."

The definitions of a number, as given in some of our text-

books, are very objectionable. One author says: "Numbers
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are repetitions of uaits." This may answer as a popular state-

ment, but is very far from meeting the requirements of a sci-

entific definition. Another author says: "A number is a

definite expression of quantity." So is a triangle or a circle,

each of which should be a number if this definition is correct.

Another says: "A number is an expression that tells how

many." The two errors are, first, that a number is not an

expression ; and, second, that a number does not tell anything.
The following definitions have also been given by different

writers: "Number is a term signifying one or more units;"

"A number is an expression of one or more things of a kind;"
" A number is an expression of quantity by a unit, or by its repe-

tition, or by its parts;" "Number consists of a repetition of

units;" "A numbter is either a unit or composed of an assem-

blage of units;" "A number is a term expressing a particular

sameness of repetition." Other definitions, equally incorrect,

may be found by leafing over text-books upon the subject.

A very simple definition, and especially suitable for a primary
text-book is, "A number is one or more units." It may be

remarked that authors seem to be adopting the definition of

Euclid, with the modification presented above, so that the

standard definition in our text-books is becoming,
" A number

is a unit or a collection of units."

To give a perfect definition of Number is exceedingly diffi-

cult, if not impossible. Stevinus defines it as "that by which

the quantity of anything is expressed," but mathematicians

have not adopted it. Euler's definition,
" number is nothing

else than the ratio of one quantity to another quantity taken

as a unit," has been hiuhly commended. "Number is a defi-

nite expression of quantity," has its advocates. "Number is

quantity conceived as made up of parts, and answers to the

question, How many ?" has the authority of a very careful

writer. The world, however, still waits for a simple and ac-

curate definition, which hiay be generally adopted.



CHAPTER III.

CLASSES OF NUMBERS.

NUMBERS
have been variously classified with respect to

different properties, or by regarding them from different

points of view. The fundamental classes to which attention

is here called, are Integers, Fractions, and Denominate Num-
bers. These three classes are practically and philosophically

distinguished, and constitute the basis of three principal

divisions of the science of arithmetic. Logically, the distinc-

tion is not without exception, for a Fraction may be denomi-

nate, and a Denominate Number may be integral; but the

division is regarded as philosophical, since they are not only

different in character, but require distinct methods of treat-

ment, and give rise to distinct rules and processes. The

philosophical character and relation of these three classes of

numbers, will appear from the following considerations :

Integers.—The Unit is the basis or beginning of numbers.

A number is a synthesis of units; it is the how -many of a

collection of units. These units, as they exist in nature, are

whole things, undivided
;

hence the first numbers of which a

knowledge is acquired, are whole numbers, that is, collections

of entire or undivided units. Such units, being entire, are

called integral units, and the numbers composed of them are

called integral numbers, or Integers. An Integer is, therefore,

a collection of integral units, or, as popularly defined, it is a

whole number. It is a product of pure synthesis.

Fractions.—The Unit, as the basis of arithmetic, may be

multiplied or divided. A synthesis of units, as we have seen,

(76)
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gives rise to Integers ;
a division of the unit gives rise to

Fractions. Dividing the unit into a number of equal parts, we

see that these parts bear a definite relation to the unit divided,

and by taking one or more of these parts, we have a Fraction.

It is thus seen that the conception of a fraction implies three

things: first, a diviaioyi of the unit; second, a comparison of

the part to the unit
;
and third, a collection of the fractional

parts. In other words it is the product of three operations,

division, comparison, and collection; or, like the logical nature

of the science of arithmetic itself, a fraction is a triune product,

consisting of analysis, comparison, and synthesis.

Denominate Numbers.—The unit of a simple integral num-

ber exists in nature. A Denominate Number is a collection of

units not found in nature; it is a collection of artificial units

adopted to measure quantity of magnitude. The philosophical

character of a denominate number is indicated in the following

statement: Nature, regarded as how many and how much,

gives rise to two distinct forms of quantity ; quantity of

multitude, and quantity of magnitude. Quantity of multitude

is primarily expressed by numbers, since it exists in the form

of individuals, or units
; quantity of magnitude does not admit,

primarily, of being expressed in numerical form. To estimate

quantity of magnitude, we must fix upon some definite part of

the quantity considered as a unit of measure, by which we can

give it a numerical form of expression.

A Denominate Number may, therefore, be defined as a

numerical expression of quantity of magnitude. Or, since

the unit is a measure by which the quantity is estimated, we

may define it to be a number whose unit is a measure.

Again, since the unit is not natural but artificial, we may de-

fine it to be a number whose unit is artificial. Either of these

definitions suSices to distinguish it from the other two classes

of numbers. It differs from them in respect of the nature of

the quantity to which it refers, and also in its origin and com-

position. In the simple integral numbers, the units, as found
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in nature, are collected
;
in the denominate number, the unit

is assumed, the quantity compared with the unit, and the

result expressed numerically. The same kind of quantity may-
be measured by dififerent units, bearing a definite relation to

each other, which gives rise to a scale of units. Taking our

scales as they now exist, we have a series of units definitely

related to each other, forming a Compound Number, which

does not appear in the other classes of numbers. This, how-

ever, is rather incidental than essential, as it partially vanishes

when we apply the decimal scale to quantity of magnitude, as

in the metric system of weights and measures.

It is thus seen that there are three distinct classes of num-

bers; and, since they require different methods of treatment,

they will be considei*ed independently. The remainder of this

chapter will be devoted to the discussion of some of the pecu-

liarities of integral numbers.

Classes of Integers. — Simple Integral Numbers, being
learned before Fractions and Denominate Numbers, are the

first class to which the term number was applied; they have

consequently appropriated to themselves the almost exclusive

use of the word number. Thus, it is the general custom to

speak of Numbers, Fractions, and Denominate Numbers, appar-

ently forgetful that they are all numbers. This custom being
so common, the word Integer being somewhat inconvenient,

and some of the properties which belong to integral numbers

applying also to the other two classes, I will also use the word

number in place of integral number in considering this part

of the subject.

Numbers are of two general classes. Concrete and Abstract.

A Concrete Number is a number in which the kind of unit is

named. An Abstract Number is a number in which the kind

of unit is not named. A concrete number may also be defined

as a number associated with something which it numbers.

This is seen in the etymology of the term, con and cresco, a

growing together. An abstract number ma}^ also be defined
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as a number not associated with anything numbered. This

is indicated by the etymology of the term, ab and traho, a

drawing from. It is not true, therefore, as has been asserted,

that "
all numbers are concrete." Number is never concrete, in

the popular sense of material. When I think of four apples,
the apples are concrete, but the four is purely numerical and

in no sense material. It would be much nearer the truth to

say that all numbers are abstract; for the number itself is

always a pure abstraction. The distinction between an abstract

and a concrete number is not a difference in the numbers them-

selves, but a distinction founded upon the fact of their being
associated or not associated with something numbered.

This distinction is clearly seen in the origin of the idea of

number. The idea of number is awakened by the contem-

plation of material objects. The mind takes the thought of

the how-many, abstracts it from the material things with which

it was at first associated, lifts it up into the region of the ideal,

and conceives it as pure number. Though the idea was pri-

marily awakened by the objects of the material world as the

occasion, yet so distinct is number from matter, that if all

material things were destroyed, we could still have a science

of number as complete as that which now exists.

There is still another method of conceiving the distinction

between concrete and abstract numbers. All numbers are

composed of units. The unit gives character and value to the

number of which it is the basis. A number is clearly appre-

hended only as we have a clear apprehension of the unit : thus,

6 pounds or 6 to7is are only clear and definite ideas to us as

we have clear and definite ideas of the units, pound and

ton. Hence, also, the nature of numbers depends upon the

nature of the units which compose them. F'undamentally,

units are of two classes, concrete and abstract. A concrete

unit is some object in nature or art, as, an apple, a hook ; or

some definite quantity agreed upon to measure quantity of

magnitude; as, a yard, a pound, etc. An abstract unit is
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merely one without any reference to any particular thing. The

concrete unit is not a number, it is only one of the things num-

bered
;

the abstract unit is the number one. A collection of

abstract units gives us an Abstract Number ; a collection of

concrete units gives us what is called a Concrete Number.
An Abstract Number is thus merely a number of abstract

units
;
a Concrete Number is a number of concrete units. The

number itself and the things numbered, considered together,

constitute what is called the Concrete Number. This is the

usual method of conceiving the distinction between an abstract

and a concrete number; but it is not as simple as the one pre-

viously presented.
From either method of conceiving the difference between

these two classes of numbers, it will be seen that the Concrete

Number is dual in its nature, consisting of two classes of units.

Thus, in the concrete number, four apples, the concrete unit

is one apple; while the basis of the number four itself is the

abstract unit, one. Both of these classes of units must be

clearly apprehended in order to have a clear and adequate idea

of any concrete number.



CHAPTER ly.

NUMERICAL IDEAS OF THE ANCIENTS.

AMONG
the ancients, much time was spent in discussing

the properties of numbers. The science, with them, was

mainly speculative, abounding in fanciful analogies. Pythag-

oras, the greatest mathematician of his age, was doejjly

imbued with this passion for the mysterious properties of

numbers. He regarded number as of Divine origin, the foun-

dation of existence, the model and archetype of things, the

essence of the universe.

Plato ascribed the invention of numbers to Theuth, as may
be seen in the following passage in the Phsedrus: "

I have

heard, then, that at Naucratis, in Egypt, there was one of the

ancient gods of that country, to whom was consecrated the

bird which they call Ibis
;
but the name of the deity himself

was Theuth. He was the first to invent numbers, and arith-

metic, and geometry, and astronomy, and moreover draughts
and dice, and especially letters." In the Timseus, he presents

the conception of the relation of numbers to time, with great

beauty of expression.
"
Hence, God ventured to form a cer-

tain movable image of eternity; and thus, while he was

disposing the parts of the universe, he, out of that eternity

which rests in unity, formed an eternal image on the principle

of numbers, and to this we give the appellation of Tiine."

Aristotle, in speaking of the Pythagoreans, says, "They

supposed the elements of numbers to be the elements of all

entities, and the whole heaven to be an harmony and numljcr."

6 (81)
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And again he says, "Plato affirmed the existence of numbers

independent of sensibles
; whereas, the Pythagoreans say that

numbers constitute the things themselves, and they do not set

down mathematical entities as intermediate between these.''

The views of Pythagoras are so curious and interesting that

they may be stated somewhat in detail. He regarded Numbe7^s

as of Divine origin, as above stated, and divided them into

various classes, to each of which were assigned distinct proper-

ties. £ven numbers he regarded as ferainiyie, and allied to

the earth
;
odd numbers were supposed to be endued with

masculine virtues, and partook of the celestial nature.

One, or the monad, was held as the most eminently sacred,

as the parent of scientific numbers. Two, or the duad, was

viewed as the associate of the monad, and the mother of the

elements, and the recipient of all things material; and three,

or the triad, was regarded as perfect, being the first of the mas

culirie numbers, comprehending the beginning, middle, and end,

and hence fitted to regulate by its combinations the repetition

of prayers and libations. It was the source of love and sym-

phony, the fountain of energy and intelligence, the director of

music, geometry, and astronomy. As the monad represented

the Divinity, or Creative Power, so the duad was the image
of matter

;
and the triad, resulting from their mutual con-

junction, became the emblem of ideal forms.

Four, or the tetrad, was the number which Pythagoras
affected to venerate the most. It is a square, and contains

within itself all the musical proportions, and exhibits by sum-

mation (1+ 2-f 3+4) all the digits as far as ten, the root of

the universal scale of numeration. It marks the seasons, the

Clements, and the successive ages of man
;
and also represents

the cardinal virtues, and the opposite vices. It marked the

ancient fourfold division of science into arithmetic, geometry,

astronomy, and music, which was termed tetractys, or quater-

nion. Hence, Dr. Barrow explains the oath familiar to the
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disciples of Pythagoras: "I swear by him who communicated

the Tetractys.^^ Five, or the pentad, being composed of the

first male and female numbers, was styled the number of the

world. Repeated in any manner by an odd multiple, it always

reappeared ;
and it marked the animal senses and the zones of

the globe.

Six, or the hexad, composed of the sum of its several fac-

tors (1-1-2+ 3), was reckoned perfect and analogical. It was

likewise valued as indicating the faces of the cube, and as

entering into the composition of other important numbers. It

was deemed harmonious, kind, and nuptial. The third power
of 6, or 216, was conceived to indicate the number of years
that constitute the period of metempsychosis.

Seven, or the heptad, formed from the junction of the triad

and tetrad, has been celebrated in every age. Being' unpro-

ductive, it was dedicated to the virgin Minerva, though pos-

sessed of a masculine character. It marked the series of the

lunar phases, the number of the planets, and seemed to modify
and pervade all nature. It was called the horn of Amalthea,
and reckoned the guardian and director of the universe.

Eight, or the octad, being the first cube that occurred, was
dedicated to Cybele, the mother of the gods, whose image, in

the remotest times, was only a cubical block of stone. From
its even composition, it was termed Justice, and made to

signify the highest or inerratic sphere.

Nine, or the ennead, was esteemed as the square of the

triad. It denotes the number of the Muses; and, being the last

of the series of digits, and terminating the tones of music, it

Avas inscribed to Mars. Sometimes it received the appellation
of Horizon, because, like the spreading ocean, it seemed to

flow around the other numbers within the decad
;
for the same

reason, it was also called Terpsichore, enlivening the productive

principles in the circle of the dance.

Ten, or the decad, from its important office in numeration,

was, perhaps, most celebrated. Having completed the cycle,
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and begun a new series of numbers, it was aptly called apo-

catastasic, or periodic, and therefore dedicated to the double-

faced Janus, the god of the year. It had likewise the epithet
of Atlas, the unwearied supporter of the world.

The cube of the triad,or the number twenty-seven, expressing
the time of the moon's periodic revolution, was supposed to

signify the power of the lunar circle. The quaternion of

celestial numbers, one, three. Jive, and seven, joined to that of

the terrestrial numbers, two, four, six, and eight, compose the

number thirty-six, the square of the first perfect number, six,

and the symbol of the universe, distinguished by wonderful

properties.

In pursuit of these mystical relations and analogies, every
number became, as it were, possessed of a property; and all

numbers possessed some relative analogy with each other to

which a name could be given. Numbers also became the sym-
bols of intellectual and moral qualities. Thus, perfect numbers

compared with those which are deficient or superabundant, are

considered as the images of the virtues, regarded as equally
remote from excess and defect, and constituting a mean point
between them : thus, true courage is a mean between audacity
and cowardice, and liberality between profusion and avarice.

In other respects, also, this analogy is remarkable, as perfect

numbers, like virtues, are few in nurnber, and generated in a

constant order; while superabundant and deficient numbers
are like vices, infinite in number, disposable in no regular

series, and generated according to no certain and invariable

law.

The tracing of these analogies, accompanied, as they usually

were, with moral illustrations of uncommon elegance and

beauty, may be considered as furnishing a pleasing, if not a

useful exercise of the understanding; but such analogies were

often taken for proofs, and assumed as the bases of the most

absurd and inconsistent theories. Thus Pythagoras considered -

"number as the ruler of forms and ideas, and the cause of
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gods and daemons;" and again that "to the most ancient and

all-powerful creating Deity, number was the canon, the efficient

reason, the intellect also, and the most undeviating of the

composition and generation of all things." Philolaus declared

"that number was the governing and self-begotten bond of

the eternal permanency of mundane natures." Another said,

"that number was the judicial instrument of the Maker of

the universe, and the fii'st paradigm of mundane fabrication."

It appears to have been a favorite practice with the Greeks

of the latter ages to form words in which the sum of the num-

bers expressed by their component letters, should be equal to

some remarkable number
;
of this kind were the words a,3paaa^

and appaaa^a, the letters in which express numbers, which added

together, are equal to 365 and 366, the number of days in the

common and bissextile years respectively ;
and it was also

remarked that the word v«2of possessed the same property as

the first of these words. Words in which the sums of the

numbers expressed by the letters were equal, were called

ovS/ia-a la6ipT/<pa;
and we have an example in the Greek anthol-

ogy, where a poet, wishing to express his dislike to a fellow of

the name of Aafiayopac, says, that having heard that his name

was equivalent in numeral value to Aoi/ibc,
a pestilence, he pro-

ceeded to weigh them in a balance, when the latter was found

to be the lighter.

Observations like these, however trifling, are not without

their portion of curiosity ;
but the same indulgence cannot be

shown to the absurdities of those Pythagorean philosophers,

who, among other extraordinary powers which they attributed

to numbers, maintained that, of two combatants, the one would

conquer, the characters of whose name expressed the larger

sum. It was upon this principle that they explained the rela-

tive prowess and fate of the heroes in Homer, narponTuc, Ektoi,

and Axi'A.^m, the sums of the numbers in whose names are 871,

.1225, and 1276 respectively.

This very singular superstition continued in force as late as
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the sixteenth century, and was transferred from the Greek to

the Roman numeral letters, I, U or V, X, L, C, D, and M,
which correspond to the numbers 1, 5, 10, 50, 100, 500, and

1000; thus the numeral power of the name of Maurice (Mau-
ritius) of Saxony, was considered as an index of his success

against Charles V. It was the fashion, also, to select or form
memorial sentences or verses to commemorate remarkable
dates. Thus the year of the Reformation (1511) was found to

be expressed by the numeral letters of this verse of the Te
Deum, Tibi cheruhin et seraphin incessabili voce proclamant,
in which there is one M, four C's, two L's, two U's or V's, and
seven l's.

The Chinese, also, are distinguished for their arithmetical

fancies. They regarded even numbers as terrestrial, and par-

taking of the feminine principle Yang; while odd numbers
were regarded as of celestial extraction, and endued with the

masculine principle Y. Even numbers were represented by
small black circles; odd numbers by small white ones, vari-

ously disposed and connected by straight lines. Thirty, the

sum of the five even numbers, 2, 4, 6, 8, and 10, was called

the number of the Earth ; twenty-five, the sum of the odd

numbers, 1, 3, 5, 7, 9, and also the square of five, was called

the number of Heaven.

The nine digits were grouped /•v O—O—O—O—o •

in two ways called io-cAoM and \_/ o—o—o—o •

Ho-tou. The former expres-
sion signifies the Book of the o '^X J^ o
jBit'(?r Lo, or whattheGreatYu I \ / Ao o y
saw delineated on the back of

(
/ \ ^ ^

the nivsterious tortoise which °
^/ \ °\Xo o ^

rose out of that river. It may
be represented as follows: Nine /*\
was the head, one the tail, •'^ •''

three and >^even its left and \ y^
^

•\_)*

right shoulders, /o«r and two

o

'^.
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its fore feet, eight and nix its hind feet. The number five,

which represented the heart, being the square root of twenty-

five, was also the emblem of Heaven. It will be noticed that

this group of numbers is the common magic square of nine

digits, each row of which amounts to fifteen.

The Ho-tou was what the Emperor Fou-hi observed on the

body of the horse-dragon which he saw spring out of the

river Ho. It consists of the ^ ^ ^ ,>_«o—o—O—o—O-O—O
first nine numbers arranged in

the form of across. The central

number was ten, which, it is

fremarked by the commentators, ^ • • • © o

terminates all the operations on^cp^ % % ••V
numbers. Other facts equally t 9 • • • J A

curious will be found in the a O o o

literature of other nations, a f o 9

full collection of which would O o

make an interesting volume. •-*

For the facts here presented,
©—e—•—•—o—•

and the manner in which they are stated, I am indebted to

Leslie.

This passion for discovering the mystical properties of num-

bers descended from the ancients to the moderns, and numer-

ous works have been written for the purpose of explaining
them. Petrus Bungus, in 1618, wrote a work on the mysteries
of numbers, extending to seven hundred quarto pages. He
illustrates all the properties of numbers, whether mathemat-

ical, metaphysical, or theological ;
and not content with col-

lecting all the observations of the Pythagoreans concerning

them, he has referred to every passage iij the Bible in which

numbers are mentioned, incorporating, in a certain sense, the

whole system of Christian and Pagan theology. He holds that

the number 11, which transgresses the decad, denotes the

wicked who transgress the Decalogue, whilst 12, the number

of the apostles, is the proper symbol of the good and the just.
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The number, however, upon which, above all others, he has

dilated with peculiar industry and satisfaction, is 666, the num-

ber of the beast in Revelation, the symbol of Antichrist
;
and

he seems particularly anxious to reduce the name of Martin

Luther to a form which may express this formidable number.

It may also be remarked that Luther interpreted this number

to apply to the duration of Popery, and also that his friend and

disciple, Stifel, the most acute and original of the early math-

ematicians of Germany, appears to have been seduced by these

absurd speculations.

The numbers 3 and t were the subject of particular specula-

tion with the writers of that age; and every department of

nature, science, literature, and art, was ransacked for the pur-

pose of discovering ternary and septenary combinations. The

excellent old monk, Pacioli, the author of the first printed

treatise on arithmetic, has enlarged upon the first of these

numbers in a manner which is rather amusing, from the quaint
and incongruous mixture of the objects which he has selected for

illustration.
" There are three principal sins," says he,

"
avarice,

luxury, and pride ;
three sorts of satisfaction for sin,

—
fasting,

almsgiving, and prayer; three persons offended by sin,—God,

the sinner himself, and his neighbor ;
three witnesses in

heaven,—the Father, the Word, and the Holy Spirit; three

degrees of penitence,—contrition, confession, and satisfaction,

which Dante has represented as the three steps of the ladder

that leads to Purgatory, the first marble, the second black and

rugged stone, the third red porphyry. There are three Furies

in the infernal regions; three Fates,—Atropos, Lachesis, and

Clotho; three theological virtues,—faith, hope, and charity;

three enemies of the soul,—the world, the flesh, and the devil
;

three vows of the Minorite Friars,—poverty, obedience and

chastity ;
three ways of committing sin,—with the heart, the

mouth, and the act; three principal things in Paradise,—glory,

riches, and justice; three things which are especially displeas-

ing to God,—an avaricious rich man, a proud poor man, and a
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luxurious old man
;
three things which are in no esteem,—the

strength of a porter, the advice of a poor man, and the

beauty of a beautiful woman. And all things, in short, are

founded in three, that is, in number, in weight, and in meas-

ure."

In these fanciful speculations, the number seven has received

an equal, if not a greater distinction than the number three.

In the year 1502, there was printed at Leipsic a work in honor

of the number seven, especially composed for the use of the

students of the university, which consisted of seven parts,

each part consisting of seven divisions. In 1624, William

Ingpen, Gent., of London, published a work entitled
" The

Secrets of Numbers, according to Theological, Arithmetical,

Geometrical, and Harmonical Computation. Drawn for the

better part, out of those ancients, as well as Neoteriques.

Pleasing to read, profitable to understand, opening themselves

to the capacities of both learned and unlearned, being no other

than a key to lead men to any doctrinal knowledge whatso-

ever." Di Borgo seems to have been influenced by the same

principle in determining the number of the divisions of arith-

metic; for he says: "The ancient philosophers assign nine parts

of algorism, but we will reduce them to seven, in reverence of

the seven gifts of the Holy Spirit ; namely, numeration,

addition, subtraction, multiplication, division, progressions,

and extraction of roots."

Some of these fancies are not entirely extinct at the present

day. In England, seven constitutes the term of apprenticeship,

the period for academical degrees, and as in our own country,

the product of these two magic numbers three and seven con-

stitutes the legal age of majority; and the frequent use of the

number seven in the Bible has given it associations which

have caused it to be regarded as a sacred number.
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CHAPTER I.

NUMERATION, OR THE NAMING OF NUMBERS.

BEGINNING
at the Unit, we obtain, by a process of syn-

thesis, arithmetical objects which we call Numbers.

These objects we distinguish by names, and thus obtain the

language of arithmetic. This language is both oral and

written. The oral language of arithmetic is called Numera-
tion ; the written language of arithmetic is called Notation.

Numeration treats of the method of naming numbers; Nota-

tion treats of the method of writing numbers. As oral

language always precedes written language, it is seen that

Numeration precedes Notation, and that the practice of arith-

meticians in reversing this order is illogical.

Numeration is the method of naming numbers. It also

includes the reading of numbers when expressed by characters.

The oral language of arithmetic is based upon a principle

peculiarly simple and beautiful. Instead of giving independ-
ent names to the different numbers, which would require more
words even to count a million than one could acquire in a life-

time, we name a few of the first numbers, and then form groups
or collections, name these groups or collections, and then use

the first simple names to number the groups. The method is

really that of classification, which performs for arithmetic

somewhat the same service of simplification that it does in

natural science. This ingenious, though simple and natural

method of breaking numbers up into classes or groups, seems
to have been adopted by all nations. With the civilized world

and with most uncivilized tribes, these groups generally con-

(93)
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sist of ten single things, suggested, undoubtedly, by the

practice among primitive races, of reckoning by counting the

fingers of the two hands.

Ilethod of Naming.—The fundamental principle of naming
numbers, then, is that of grouping by tens. We regard ten

single things as forming a single collection or group; ten of

these groups forming a larger group, and so on; ten groups
of any one value forming a nevv^ group of ten times the value,

each group being regarded and used as a single thing. In this

way, by giving names to the first nine numbers, and names to

the groups, and employing the first nine to number the groups,
we are enabled to express the largest numbers in a concise and

convenient form. The value of this method of naming may
be seen from the consideration that, without it, the memory
would be overwhelmed by the multiplicity of disconnected

words, and we should require a lifetime to learn the names of

numbers, even up to a few hundred thousands. It also enables

us to form a clear and distinct conception of large numbers,
whose composition we discover in the words by which they
are expressed, or in the symbols by which they are represented.

It serves, also, as a basis for the ingenious and useful method

of writing numbers, without which arithmetic would be almost

useless to us.

Naming numbers in this way, a single thing is called one ;

one and one more are two ; two and one more are three ; and

in the same manner we obtain four, five, six, seven, eight, and

nine, and then adding one more and collecting them into a

group, we have ten. Now, regarding the collection ten as a

single thing, and proceeding according to the principle stated,

we have one and ten, two and ten, three and ten, etc., up to

ten and ten, which we call two tens. Continuing in the same

manner, we have two tens and one, two tens and two, etc,

up to three tens, and so on until we obtain ten of these groups
of tens. These ten groups of tens we now bind together by a

thread of thought, forming a new group which we call a hun-
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dred. Proceeding from the hundred in the same way, we
unite ten of these into a larger group which we name thousand,

etc.

This is the actual method by which numbers were originally

named; but unfortunately, perhaps, for the learner and for sci-

ence, some of these names have been so much modified and

abbreviated by the changes incident to use, that, with several

of the smaller numbers at least, the principle has been so far

disguised as not to be generally perceived. If, however, the

ordinary language of arithmetic be carefully examined, it will

be seen that the principle has been preserved, even if disguised

so as not always to be immediately apparent. Instead of one

and ten we have substituted the word eleven, derived from an

expression formerly supposed to mean one left after ten, but

now believed to be a contraction of the Saxon endlefen, or

Gothic ainlif (ain, one, and lif, ten); and instead of two and

ten, we use the expression twelve, formerly supposed to have

been derived from an expression meaning tivo left after ten,

but now regarded as arising from the Saxon twelif, or

Gothic tvalif (tva, two, and lif, ten.)

With the numbers following twelve, the principle can be

more readily seen, though by constant use the original expres-

sions have been abbreviated and simplified. The stream of

speech, "running day by day," has worn away a part of the

primary form, and left us the words as they now exist. Thus,

supposing the original expression to be three and ten, (orig-

inally the Anglo-Saxon thri and tyn) if we drop the conjunction

and, we shall have three-ten ; changing the ten to teen we
have three-teen; then changing the three to thir, and omitting
the hyphen, we have the present form thirteen. In a similar

manner the expression four and ten becomes fourteen; five

and ten, fifteen ; six and ten, sixteen, etc. By the same prin-

ciples of abbreviation and euphonic change, we might have

obtained twenty, thirty, etc. Supposing the original form to

he two tens, or twain tens (in the Saxon twentig, from twegen,



96 THE PHILOSOPHY OF ARITHMETIC.

two, and tig, ten), then changing the twain to twen, and the

tens to ty, we shall have the common form, twenty. In three

tens, changing the three to thir and the tens to ty, we have

thirty. In the same way we obtain forty, fifty, sixty, etc.,

and from these by omitting the aiid in the expression two tens

and one, tivo tens and two, etc., we have twenty-one, twenty-

two, thirty-three, forty-seven, etc.

To illustrate the law of the formation of these names, we
have used the present English forms rather than those in which

the transformations actually occurred. It will be remembered

that these names were derived from the Anglo-Saxon, and the

changes which we have illustrated took place in that language
before the names were adopted in the English tongue. The

word thirteen was actually derived from the Anglo-Saxon

threo-tyne, which was composed of thri, three, and tyne, ten;

fourteen from feowertyne, composed oifeower, four, and tyne,

ten, etc. We get the word tiventy from the Anglo-Saxon

twentig, which is composed of the Anglo-Saxon twegen, two,

and tig, ten; thirty from thritig, which is composed of thri,

three, and tig, ten, etc. The law of the composition of these

original words is no doubt the same as that illustrated by
the use of the English words given above.

In a similar manner we name the numbers from one hundred

to the next group, consisting of ten hundreds, to which we

assign a new name, calling it thousand. After reaching the

thousand, a change occurs in the method of grouping. Previ-

ously, ten of the old groups made one of the next higher group,

but after the thii'd group, or thousands, it requires a thousand

of an old group to form a new group, which receives a

new name. A thousand thousands forms the next group
after thousands, which we call million from the Latin mille,

a thousand. In the same manner, one thousand millions

gives a new group which we call billion, one thousand billions

a new group which we call trillion, etc.

This change in the law by which a new group is formed from
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an old one, is not an accident; it is intentional. It is due to

science, rather than to chance. The method of counting ten

in a group was commenced in an age anterior to science, and

proceeded no further than hundreds and thousands, since the

wants of the people did not require larger numbers; but when

arithmetic began to be cultivated as a science, it was seen to

be a matter of convenience to increase the size of the groups

receiving a new name, and then the law became changed.

The reason that the law of naming numbers does not appear

in the names of the smaller numbers, is, that they became

changed from the original form on account of their frequent

use. The same fact appears in grammar in the irregularity of

the verbs expressing ordinary actions, as run, go, eat, drink,

etc., which became thus irregular in the formation of their

tenses from the constant and careless use of the common peo-

ple, before the language was fixed by the rules of science or

the art of printing.

Utility.
—The utility of the method of naming numbers by

collecting them into groups or bunches, is generally imperfectly

appreciated. The method which naturally would be first sug-

gested to the mind, is to give each number an independent

name, just as we distinguish rivers, cities, states, etc. This

would, of course, require a vocabulary of names as extensive

as the series of natural numbers,— a vocabulary which, even for

the ordinary purposes of life, could be learned only by years

of labor. By the method of groups, the vocabulary is so sim-

ple that it can be acquired and employed with the greatest

ease. It may be remarked, that this method of grouping,

though suggested by the accidental circumstance of counting

the fingers, is in accordance with that universal operation of

the mind by which it binds up its knowledge into bunches or

packages. It is, in fact, based upon the principle of generaliza-

tion and classification.

Origin of Names.—The origin or primary meaning of the

names applied to the first ten numbers, is not known. It has'

7
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been supposed that the names of the simple numbers were

originally derived from some concrete objects, and there are a

few facts which seem to indicate the correctness of this suppo-
sition. Thus, the Persian name for five is pendje, while

pentcha means the expa?idedhand, and the corresponding terms

in the Sanskrit are said to have a similar meaning. The term

linia, which with slight modifications is used for fice through-
out the Indian Archipelago, means hand in the language of

the Otaheite and other islands. Among the Jaloffs, an African

tribe, the word for five, juorum, likewise signifies hand.

Among the Greenlanders the term ior twenty is innuk, or man;
that is, after completing the counting of fingers and toes, they

say innuk or man ; and there are also examples of the identity

of the term for man and twenty
'

a,uiong some of the tribes of

South America.

Among the Indians of Bogota, New Grenada, the term

quicha, meaning a foot, is used. to number the second decade,

while twenty is named gueta, which signifies a house. Nearly
all the South American tribes use the word for hand to express

five, and in many cases the word for man is used to express

twenty. A tribe in Paraguay denote four by an expression
which means i\\Q fingers of the Emu, a bird common in Par-

aguay, possessing -four claws on each foot, three before, and

one turned back
;
and their word for five is the name of a

beautiful skin with^L-6 different colors. The same number is,

however, more commonly expressed by hanami begem, the

fingers of one hand; ten is expressed by the fingers of both

hands; and for twenty they say hanam rihegeni cat gracha-
haka anomichera hegem, the fingers of both hands and feet.

Among the Caribbeans, the fingers are termed the children of

the hand, and the toes children of the feet
;
and the phrase for

ten, chou oucabo raim, means all the children of the hands.

Humboldt has given from the researches of Duquesne, the

etymological signification of some of the numerals of the

Indians of New Grenada. Thus, ata, one, signifies water;
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bosa, two, ail enclosure ; mica, three, changeable ; muyhica,

fom', a cloud threatening a tempest; hisa, five, repose; ta,

six, harvest ; cahupqua, seven, deaf ; suhuzza, eight, a tail ;

and ubchica, ten, resplendent moon. No meaning has been

discovered for aca, the numeral for 7iine. It would seem im-

possible, amidst such various meanings, to discover any prin-

ciple which may seem to have pointed out the use of these

terms as numerals.

In the Mexican numeral symbols there is an intelligible con-

nection between the sign and the thing signified, though the

association seems to be entirely arbitrary. Thus, the symbol
for one is a frog; for two, a nose with extended nostrils, part

of the lunar disk, figured as a face
;
for three, two eyes open,

another part of the lunar disk; for four, two eyes closed;

for five, two figures united, the nuptials of the sun and

moon, conjunction ;
for six, a stake with a cord, alluding

to the sacrifice of Guesa tied to. a pillar; for seven, two ears ;

for eight, no meaning assigned; for nine, two frogs coupled;
for ten, an ear ; for twenty, a frog extended.

The following theory, advanced by Prof. Goldstiicker, in a

paper read before the Philological Society in 1870, in which he

gives good linguistic evidence in support of the origin of the

Sanskrit numerals, and consequently of our own, is at least

plausible, and will be interesti;ig: One, he says, is "he," the

third personal pronoun; two, "diversity;" three, "that which

goes beyond;" ybwr, "and three," that is, "one and three;"

fve, "coming after;" six, "four," that is, "and four," or "two
and four;" seven, "following;" eight, "two fours," or "twice

four ;" nine,
" that which comes after" (ch. nava, new); ten,

"two and eight." Thus, only one and two have distinct orig-

inal meanings. After giving these, our ancestors' powers
needed a rest; then they made three, and added to it one for

four; then took another rest, repeated the notion of three in

^/7fe, and the notion of four in six ; then rested once more,
and again repeated the notion of three and^zuein seven ; took
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another rest, and got a new idea of two fours for eight; but

for nine repeated for the fourth time the "
coming after" notion

of three, five, and seven; while for ten they repeated for the

third time the addition-notion o^four and six. The Professor

insists strongly on this seeming poverty and helplessness of

the early Indo-European mind. He does not put forward the

above meanings of the numerals as new, though he believes

that his history of most of the forms of their names is so.

The anomalous form of the Sanskrit shash, six—the hardest of

them—first set him at work on the numerals, and the Zend
form kshvas led him to the true explanation of this, and thence

to that of the other numerals.

In closing this chapter, we remark that the names of the

periods above duodecillions have not been fully settled by usage.

Prof. Henkle, who has examined the subject with considerable

care, finds a law which he maintains should hold in the forma-

tion ofthe names of the higher periods. The terms quintillions,

sextillions, and nonillions are formed, not from the cardinals,

quinque, sex, and novem, but from the ordinals, quintus, sextus,

and nonus. From this he infers that analogy plainly demands

that the names beyond duodecillions should be formed from

the Latin ordinal numerals. For the names thus formed, see

appendix.



CHAPTER II.

NOTATION, OR THE WRITING OF NUMBERS.

ARITHMETICAL
language is the expression of arithmet-

ical ideas. These ideas may be expressed in sound to

the ear, or in visible form to the eye ;
arithmetical language is,

therefore, both oral and written. The oral language is called

Numeration; the written language. Notation. Numeration is

the method of naming numbers; Notation is the method of

writing numbers. From this consideration it would seem that

the written language of arithmetic must bear an intimate rela-

tion to the oral language, which we find to be the case. The

general method of writing numbers, now adopted by all civil-

ized nations, is the Hindoo, usually called the Arabic method.

This method is based upon, and arises naturally out of, the

method of naming numbers by groups.
The fundamental principle of the Arabic system is the

ingenious and refined idea of place value. Recognizing the

method of naming numbers by groups, it assumes to represent
these groups by the simple device of place. It fixes upon a

few characters to represent a few of the first numbers, and

then employs these same characters to number the groups,
the group numbered being indicated by the place of the char-

acter. This leads to the distinction of the intrinsic and local

value of the numerical characters. Each character has a defi-

nite value when it stands alone, and a relative value when used

in connection with other characters.

The number of the arithmetical characters is determined by
the number of units in the group. The grouping being by

( 101 )
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lens, the number of characters needed is only nine, one less

than the number of units in the group. These characters are

called digits, from the Latin digitus, a finger, the name com-

memorating the ancient custom of reckoning by counting the

fingers. In the combination of these characters to express

numbers, it will often be required to indicate the absence of

some group ;
hence arises the necessity of a character which

expresses no value, a character which denotes merely the

absence of value. This character is known as naught, or zero.

We thus have the following ten characters : 1, 2, 3, 4, 5, 6, *l,

8, 9, 0, with which we are able to express all possible numbers.

Utility.
—The Arabic system, based upon the refined idea of

place value, is one of the happiest results of human intelli-

gence, and deserves our highest admiration. Remarkable as Is

its simplicity, it constitutes, regarded in its philosophical char-

acter or its practical value, one of the greatest achievements of

the human mind. In the hands of a skillful analyst, it be-

comes a most powerful instrument in wresting from nature her

hidden'truths and occult laws. Without it, many of the arts

would never have been dreamed of, and astronomy would have

been still in its cradle. With it, man becomes armed with

prophetic power,—predicting eclipses, pointing out new planets

which the eye of the telescope had not seen, assigning orbits

to the erratic wanderers of space, and even estimating the ages

that have passed since the universe thrilled with the sublime

utterance, "Let there be light!" Familiarity with it from child-

hood detracts from our appreciation of its philosophical beauty
and its great practical importance. Deprived of it for a short

time, and compelled to work with the inconvenient methods of

other systems, we should be able to form a truer idea of the

advantages which this invention has conferred on mankind.

lieLation to Numeration.—Though the methods of notation

and numeration are intimately related, there is also an essential

distinction between them. Though similar, they are by no means
identical in principle. Their similarity is seen in the fact that
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the inetliod of notation could not be applied without the method

of numbering' by groups; their distinction is seen in the fact

that we could have the present method of numeration without

the Arabic system of notation. The notation seems to be an

immediate outgrowth from the numeration, yet not a necessary

one; for many nations who had the same method of naming
numbers, employed other methods of writing them.

Their true relation also appears in considering their common
relation to the decimal scale. The decimal principle belongs
both to our method of naming and of writing numbers. This

coincidence is not accidental, but essential to the harmony
of oral and written expression. The necessity of this w^ould

be very apparent if we should attempt to change the base

of the scale of notation without changing the base of the

method of naming numbers. With our present base we say
one and ten, hvo and ten, etc., or at least their equivalent's;

and our written expressions are read in the same manner.

Should we adopt any other scale of notation, retaining our

present base in naming numbers, the reading of numbers in

this new scale would be so awkward and inconvenient as to be

almost impossible. Hence it follows, that for a scale of nota-

tion to be advantageously employed, the methods of naming
and writing numbers should possess the same basis. Thus, if

the scale of notation be quinary, instead of naming numbers

five, six, seven, etc., we should say five, one and five, two and

five, etc.; if the scale were senary, we should say six, one and

six, two and six, etc.

Relation to the Base.—li will also be seen that the princi-

ple of the methods of naming and writing numbers is entirely

distinct from the number used as the base. The intimate asso-

ciation of the Arabic system with the base, has sometimes led

to the idea that the base is a part of the system itself. This

error should be carefully avoided. The Arabic method

assumes that we name numbers by groups, and that each

group contains ten; but it is in principle entirely independent
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of the number constituting a group. The number in the group
determines the base of the scale, and consequently the number

of characters to be used, but does not affect the principle of

the method, which is simply that of place value. Should we

change the base of numbering, it would change the names of

the numbers after twelve, and the base of the Arabic scale;

but it would ia no wise affect the principle of either the method

of numeration or of notation.

Numbei- of Characters.—The number of characters in the

Arabic system of notation depends upon the number of

units in the groups of numeration. Thus, we must have as

many simple characters as will express the different numbers

from one until we reach within a unit of the group. We shall

have no character for the group, since, according to the device

of place value, it is to be indicated by changing the place of

the symbol which represents one, it being one of the first

group. The number of significant characters must, therefore,

be always one less than the number denoting the base of the

system. In the decimal scale the number of digits is nine ;

in an octary scale it would be seven; in a quinary scale, ybwr,
etc.

Origin.—The origin of this system of notation is now uni-

versally accredited to the Hindoos. When, by whom, and how
it was invented, we do not know. It is not improbable that it

began with the representation of the spoken words by marks,

or abstract characters. They may at first have given inde-

pendent characters to the numbers as far as represented. It

then probably occurred to them that, since they gave independ-
ent names to a few numbers and then numbered by groups,

they could simplify their system of notation by making it cor-

respond to their system of numeration. Then first dawned

upon the mind the idea of a few characters to represent the

first simple numbers, and the use of these same characters to

number the groups. They now stood- on the threshold of one

of the greatest discoveries of all time. Here arose the ques-
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tion—How are these groups to be distinguished? How shall

we determine when a character denotes a number of units or

tens, or hundreds, etc.? How many methods occurred to them

before the method o{ place, who can tell? This might have

been done by slightly varying the character, by attaching some

mark to it, by annexing the initial of the group, etc.; either of

which would have been comparatively complicated and incon-

venient. At last, to the mind of some great thinker, occurred

the simple idea of place value, and the problem was solved.

"Who was the man ?" is a question answered only by its own

echo, for his name sleeps in the silence of the past. Were it

known, mankind would feel like rearing a monument to his

memory, as high and enduring as the Pyramids of Egypt ;
but

now it can only raise its altar to the Unknown Genius.

Origin of Characters.—The origin of the characters, like

that of the system, is shrouded in mystery ;
not a ray of light

upon the subject comes down the historic path. Many of the

early writers gave some ingenious speculations concerning
their origin. Gatterer imagined that he had discovered in

Egyptian manuscripts written in the enchoriac character,

that the digits were denoted by nine letters; and Wachter

supposed them to have a natural origin in the different com-

binations of the fingers: thus, unity is expressed by the

outstretched finger ;
two by two fingers, which may have been

represented by two marks that, by long use, passed into the

present form, and so on for all the other symbols. In the

absence of facts, three theories have been presented, which are

at least interesting on account of their ingenuity, and are

certainly somewhat plausible. One of these theories is that

they are formed by the combination of straight lines, as the

primary representation of numbers
;
another is that they are

formed by the combination and modification of angles; and

still another and more recent theory is that they are the

initial letters of the Hindoo numerals. These three theories

may be distinguished as the theories of lines, angles, and

initial letters.



106 THE PHILOSOPHY OF ARITHMETIC.

The first theory is based on the primary use of straight

lines to represent numbers. By this method, one straight

line, |j
would represent one; two straight lines which may

have been connected thus, [_, two; three lines, thus, y, or with

a connecting curve, thus, 3, three ; four lines arranged thus,

, or thus, A, fou?' ; five lines arranged thus, 5. fi^'^i six lines

arranged thus, ^, six ; seven lines, thus, Q, seven ; eight lines

thus, g, or thus x, eight; nine lines, thus, ^, nine. The

zero is supposed to have been originally a circle, suggested
from counting around the fingers and thumbs held in a circular

position.

The second theory is based upon the use of angles to repre-

sent numbers. The ancient mathematicians were noted for

their astronomical observations and calculations, and being

thus familiar with the use of angles, it is not unreasonable to

suppose that they would employ the angle in their representa-

tion of numbers. Thus, they might very naturally have used

one angle, '^,
for one ; two angles, 2, for two ; three angles J,

for three; four angles,^,
for four; five angles, C' f^^' Ji^'^ >

six angles, £, for six ; seven angles, Q, for secen ; eight

angles, 0, for eight; nine angles,^, for nine. These char-

acters being frequently made, would eventually assume the

rounded form which they now possess. By this theorj^, the

character for zero is easilv and natural! v accounted for If

angles were used to represent numbers, nothing would be rep-

resented by a character having no angles, which is the closed

curve.

The latest and most plausible theory for the origin of Arabic

characters is, that they were originally the initial letters of

the Sanskrit numerals. This theory is presented by Prin-

seps, a profound Sanskrit scholar, and is indorsed by Max
Miiller. Such a use of initial letters was entirely feasible

in the Sanskrit language, as each numeral began with a dif-

ferent letter. The plausibility of the theory further appears

from the fact that it follows the general law of represeniing

k*
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numbers by letters, as in the Roman, Greek, and Hebrew

systems.

This theory does not account for the origin of the zero, the

most important character of them all,
—in fact, the key to the

system of modern arithmetic. No other system of notation

except the sexagesimal system, had it. Max Miiller says:
"
It would be highly important to find out at what time the

naught first occurs in Indian inscriptions. That inscription

would deserve to be preserved among the most valuable monu-,

ments of antiquity, for from it would date in reality the

beginning of true mathematical science—impossible without

the naught—nay, the beginning of all the exact sciences to

which we owe the invention of telescopes, steam engines, and

electric telegraphs." Dr. Peacock supposes that it was derived

from the Greek o,
introduced by Ptolemy to denote the vacant

places in the sexagesimal arithmetic; the Hindoos, he says,

having used a dot for this purpose.

It seems to have been difficult at first to comprehend the pre-

cise force of the cij^he?-, which, insignificant in itself, serves only
to determine the rank and value of the other figures. When

they were first introduced into Europe, it was deemed necessary
to prefix to any work in which they were used, a short treatise

on their nature and application. These notices are often met
with attached to old vellum almanacs, or inserted in the blank

leaves of missals, and frequently intermixed with famous prophe-

cies, most direful prodigies, and infallible remedies for scalds

and burns. A sort of mystery, which has imprinted its trace

on our language, seemed to hang over the practice of using
the cipher; and we still speak of deci2)liering and writing in

cipher, in allusion to some dark or concealed art. Indeed, in

the early history of arithmetic in Europe, either on account of

its association with the infidel Mohammedans from whom it

was derived, or of the popular prejudice against learning which

prevailed at that time, the system was regarded as belonging
to black art and the devil; and it was, no doubt, this popular

prejudice that delayed its general introduction into Christian

Europe.



CHAPTER III.

ORIGIN OF ARITHMETICAL SYMBOLS.

THE
symbols of arithmetic may be divided into three general

classes: Symbols of Number, Symbols of Operation, and

Symbols of Relation. What is the origin of these symbols ;

who invented them, or first employed them? This question, a

very interesting one, I shall endeavor to answer in the present

chapter.

I. Symbols op Number.—The Symbols of Number em-

ployed by different nations, are the Arabic figures and the

letters of the alphabet. Nearly all civilized nations seem to

have made use of the letters of the alphabet to represent num-

bers. The Greeks divided their letters into several classes, to

represent the different groups of the arithmetical sctAe. The

Roman system employed the seven letters, I, V, X, L, C, D,

and M, to represent numbers. The Arabs at first used the

Greek method, and afterward exchanged it for that of the Hin-

doos.

There are three theories given for the origin of the Arabic

symbols of notation, known respectively as the theory of lines,

of angles, and of initial letters. These three theories are

explained in the chapter on Notation. It may also be remarked

that some of the Arabian authors who treat of astrological

signs, allege that the Indian or Arabic numerals were derived

from the quartering of the circle, and Leslie says that the

resemblance of these natural marks to the derivative ones

appears very striking. The Roman symbols are supposed to

have originated in the use of simple straight lines or strokes,

(108)
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variously combiued, for which were subsequently substituted

the letters of the alphabet. This theory is explained at length
in the chapter on Roman Notation.

II. Symbols of Operation.—The Symbols of Operation
are the signs of addition, subtraction, multiplication, division,

involution, evolution, and aggregation. The origin of most of

these symbols has been definitely determined.

The Symbols of Addition and Subtraction, (+ ) and (
—

),

were first introduced by Michael Stifel, a German mathemati-

cian of the sixteenth century. They first appeared in a work

published by him at Nuremberg, in 1544, and are believed to

have been invented by him. This is implied by the manner
in which he introduces them: "thus, we place this sign," etc.,

and "we say that the addition is thus completed," etc. Prof.

Rigaud supposed that + was a corruption of P, the initial of

plus, and Dr. Davis thought that it was a corruption of et or

d;. Stifel, however, does not call the signs plus and minus,
but signum additorum and signum subtractorum, which ren-

ders these suppositions improbable.

Dr. Ritchie suggested that perhaps + was two marks joined

together, to signify two numbers joined together in addition
;

and that — was taken to indicate subtraction, since it is what

is left after one of the marks is removed. It is thought by
De Morgan that the minus sign (

—
) was first used, and that

-4- was derived from it by putting a small cross-bar for distinc-

tion.
" The sign -f," he says, "in the hands of Stifel's printer,

has the vertical bar much shorter than the other; and when it

is introduced into the wood-cuts of the engraver, the dispropor-

tion is greater still." The Hindoos, from whom our knowl-

edge of algebra was originally derived, used a dot for

subtraction, and the absence of the dot for addition. It is not

unlikely that the Hindoo dot was elongated into a bar to sig-

nify subtraction, and that the first who found it convenient to

introduce a sign for addition, merely adopted the sign for sub-

traction with a difference.
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Some have supposed that Stifel might have obtained these

symbols from some other mathematician of his age; but this

is improbable. The person to whom he refers as his principal

teacher in algebra, was Christoff'er Rudolph, who published, in

15G1, a work entitled, Kunstliche Eechnung niit der zifferund
mit der zalpffnnivgen; but there is nothing in this work like

either of the signs + or —
>
so that it appears quite certain

that Stifel did not obtain them from him.

M. Libri attributes the invention of + and — to Leonardo da

Yinci, the celebrated Italian artist and philosopher ;
other writers,

however, say that Da Vinci used the symbol -\- for the figure

i. After the most careful investigation, the invention and

introduction of these two symbols are almost universally

accredited to Stifel. It may be remarked that these symbols
were not immediately adopted by other mathematicians. In a

work on algebra, published in 1619, the signs of addition and

subtraction are P and M, with strokes drawn through them.

The Symbol of llultiplication (x), St. Andrew's cross,

was introduced by William Oughtred, an eminent English
mathematician and divine, born at Eton in 1573. The work

in which this symbol first appeared was entitled Clavis Matlie-

maticse, "Key of Mathematics," and published in 1631. Ough-
tred was a fine thinker, and was honored by the title

"
prince

of mathematicians."

The Symbol of DivUion (-=-) was invented by Dr. John

Pell, Professor of Philosophy and Mathematics at Breda.

,He was born at Southwick in Sussex, 1010, and died in 1685.

This symbol was used by some old English writers to denote

the ratio or relation of quantities. I have also noticed it used

thus in some old German mathematical works. Dr. Pell was

highly regarded as a mathematician. It was to him that

Newton first explained his invention of fluxions.

The Syiitem of Exponents, to represent the powers of a num-

ber, Avas introduced by Descartes, the illustrious mctaph^'sician

and inventor of Analytical Geometry. The earliest writer on
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algobra denoted the powers of a nuuiber by au abbreviation of

the name of the power. Harriot, a mathematician of the 17th

century, repeated the quantity to indicate the power ; thus, for

a* he wrote aaaa.

The Radical Sign (v^) was introduced by Stifcl, the

inventor of + and —. This symbol is a modification of

the letter ?•, the initial of radix, root. The root of a quantity

was formerly denoted by writing the letter r before it, and this

letter was gradually changed to the form y/-

The Vinculum or Bar, placed over quantities to connect them

together, thus, 4 X 3-t-5 was first used by Vieta, the introducer,

in algebra, of the system of representing known quantities by

symbols. The Parenthesis was first used by Albert Girarde, a

Dutch writer on algebra, of the sixteenth century. Who first

introduced the other signs of aggregation I have not been able

to ascertain.

III. Symbols of Relation.—Symbols of Relation are the

signs of equality, ratio, equal ratios, inequality, and deduction.

The origin ol a few of these has been ascertained.

The Symbol of Equality (=) was introduced by Robert

Recorde, an English physician and mathematician of the

sixteenth century. It first appeared in his work on algebra,

called by the singular title. Whetstone of Wit. He gives his

reason for the symbol in the following quaint language :

" And
to avoide the tediouse repetition of these words, I will settle

as I doe often in worke use, a pair of parallels or Gemowe
lines of one lengthe, thus: =, because no 2 thynges can be

more equalle."

This sign was also employed by Albert Girarde. The

French and German mathematicians used the symbol oo to

denote equality, even long after Recorde. This symbol is said

to be a modification of the diphthong se, the initial of the

Latin phrase sequale est.

The Symbol of Ratio (:) is supposed to be a modification of

the sign of division. The sign of division was frequently
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employed by the old English and German mathematicians to

indicate the relation of quantities. Who first omitted the dash

and employed the present form of the symbol of ratio, I have

not been able to ascertain.

The Symbol of Equal Ratios (::) may be a modification of

the sign of equality (=) or a duplication of the symbol of

ratio (:), but this is not certain. It seems to have been intro-

duced by Oughtred, in a work published in 1631.

The Symbols of Inequality (> and <) are evidently mod-

ifications of the sign of equality. If parallel lines denote

equality, oblique lines would naturally be used to denote

inequality, the lines converging towards the less quantity.

"Who first employed this sign is probably known, but I have

no note of it, and have nothing upon it in my library.

I have now presented, in a connected and systematic manner,
about all that is known concerning the origin of the ordinary

arithmetical symbols.



CHAPTER lY.

THE BASIS OF THE SCALE OF NUMERATION.

THE
Basis of our scale of numeration and notation is dec-

imal. This basis is not essential, but accidental. Man-

kind commenced reckoning by counting the fingers of the left

hand, including the thumb, and thus at first probably reckoned

by^L-es. As the art of numbering advanced, they adopted a

group, derived from the fingers of both hands, and thus ten

became the basis of numbering. The decimal base was con-

sequently determined by the number of fingers on each hand.

Had there been three fingers and a thumb, the scale would

have been octary; had there been five fingers and a thumb,

the scale would have been duodecimal, which would have been

a great advantage to arithmetic, whatever it might have been

to the hand itself.

The universal use among civilized nations of the decimal

scale of numeration seems to imply some peculiar excellence in

it. It appears as if nature had pointed directly to it, on

account of some essential fitness of the number ten, as the

numerical basis. Indeed, this opinion has been quite general,

and the habit acquired from the use of the system has served

to confirm the belief. Many persons get the base of numera-

tion and the mode of notation so mingled together that they

see in the Arabic system nothing save the decimal basis of

numeration, and attribute to it all those high qualities which

belong to the mode only. It is this which has led some per-

sons to regard the decimal basis as the perfection of simplicity

and utility.

8 (llo)
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A little reflection, however, will prove that such an assump-
tion is groundless. Although the decimal scale has been

adopted by every civilized nation, yet, as has been shown, the

selection was accidental, and the base entirely arbitrary. The
selection occurred before attention was given to a general sys-

tem, in short, without reflection, and its supposed perfection is

a mere delusion. Any other number might have been taken

as the root of the numerical scale
; and, were a new basis to

be selected by mathematicians familiar with the properties of

numbers, there are several considerations that would lead them

to adopt some other basis than the decimal. Some of the

objections to the decimal basis will be stated, and a few consid-

erations presented in favor of some other number as the basis

of the language of arithmetic.

First, the decimal scale is unnatural. It has been super-

ficially urged that the decimal scale is the most natural one

that could have been selected. On the contrary, there is no-

thing natural about it, except the fingers, and a little reflection

would have shown that these are grouped hy fours instead of

fives. In fact, a group by tens is seldom seen, either in nature

or in art. What things exist by tens, associate by tens, or

separate into tenths ? Nature groups in pairs, in threes,

in fours, in fives, and in sixes; but seldom, if ever, in

tens. Man doubles and triples and quadruples his units
;
he

divides them into halves and thirds and quarters; but where

does he estimate by tens or tenths? It is thus seen that the

grouping by tens is an unnatural method, suggested neither

by nature nor the practical requirements of art.

Second, the decimal scale is unscientific. The confused

idea of the relation of the base of the scale to the mode of

notation, has led some to suppose that the decimal scale is one

of the triumphs of science. The truth is, as has already been

shown, that not only was it not established upon scientific

principles, but it is really a violation of those principles. The

decimal scale oris'inated bv chance, bv a mere accident Men
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bad 1(311 fingers, including the thumbs, and found it convenient

to reckon by counting their fingers; and thus acquired the

habit of counting by tens. Had science, instead of chance,

presided at its birth, we should have a basis that would have

given a new beauty and- a greater simplicity to our already
admirable system of arithmetical language.

Third, the decimal scale is also inconvenient. It has been

held not only that the decimal basis is scientific, but that

it is the most convenient one that could have been selected.

It needs but little reflection to see the incorrectness of this

assumption. One essential for the basis of a scale is the

property of its being divisible into a number of simple parts,

so that it may be a multiple of several of the smaller numbers.

The number ten will admit of only two such divisions, the

half and the fifth. The third, fourth, and fiixth are not exact

parts of the denary base, in consequence of which it is incon-

venient to express these fractions in the scale. Were the

basis twelve instead of ten, we could obtain the half, third,

fourth, and ^ixth, and these fractions could be expressed by
the scale in a single place ; whereas the fourth now requires

two places (.25), and the third and sixth cannot be expressed

exactly in a decimal scale, except as a circulate.'

Essentials of a Base.—It will be interesting to notice some

of the essentials of a base, and to observe what number com-

plies most fully with these requirements. The first essential

of a good base is that it will admit of being divided into the

simple fractional parts ;
the second is that the number be neither

too large nor too small. The advantage of the capability of

being divided into simple fractional parts is that such fractions

may be readily expressed in the terms of the scale as we now

express decimal fractions. In the decimal scale only one-half

and one-fifth can be expressed in one place of decimals, since

they are the only exact parts of ten. With a scale whose basis is

a multiple oi two, three, four and six, each corresponding frac-

tion could be expressed in terms of tlie scale in a single place.
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In respect to the size of the base, if the number is too

small, it will require too many names and places to express

large numbers. If the number is very large, it will group
together too many units to be apprehended and easily used in

numerical operations.

Other Scales.—There are several other bases which have been

recommended as preferable to the decimal
;
the most important

of which are the Binary, the Octary, and the Duodecimal. The

Binary scale was proposed and strongly advocated by Leibnitz.

He maintained that it was the most natural method of counting,
and that it presented great practical and scientific advantages.
He even constructed an arithmetic upon this basis, called Binary
Arithmetic. The obvious objection to this base is, that it

would require too many names and too many places in writing

large numbers. The Octary system has also been strongly
advocated. A very able article in an American journal says
that the binary base is the only proper base for gradation, and

the octary is the true commercial base of numeration and nota-

tion.

It is probable, however, taking all things into consideration,

that the duodecimal scale would be the most suitable. The
number twelve is neither too large nor too small for conveni-

ence. Its susceptibility of division into halves, thirds, fourths,

and sixths, is an especial recommendation to it. So great ai"e

these advantages, that, if the base were to be changed, the

duodecimal base would, without doubt, be selected.

The advantage of the duodecimal scale is especially apparent
in the expression of fractions in a form similar to our decimal

fractions. In the decimal scale, -^
and \ are the only simple

fractions that can be expressed by the scale in a single place;

^ cannot be expressed at all as a simple decimal
; \ requires

two places, and \, like ^, gives an interminate decimal. With
a duodecimal scale we could express ^, ^, \, and i in a

single place; while
|-
and i would require only two places.

Thus, in the duodecimal scale, we should have ^=.6; ^=.4;
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^=.3; i=.2; ^=.16, and ^=.14. This is a very great sim-

plification ;
and since all combinations of 2 and 3 could be

readily expressed, and since these constitute such a large pro-

portion of numbers, it is evident that the simplification of the

subject, by means of a duodecimal scale, would be very con-

siderable.

I will arrange the expressions of these fractions in the deci-

mal and duodecimal scales, side by side, that the advantage of

the latter may be more clearly seen.

Decimal Scale, Duodecimal Scale.

^=.5 i=.166+
i=.333+ |=.142857
1=25 ^=.125

1^.6 1=2
2

1=4 |=.186*35
\=.B i=.16
i=.249Y i=.144=.2 i=.lll+

It will be seen that in the decimal scale all the simple frac-

tions used in practice, except ^, give circulates or require two

or three figures to express them; while in the duodecimal scale

all the fractions ordinarily used in business transactions are

expressed in a single place, and even ^ and i
require only two

places. The fractions I and ^ cannot be exactly expressed in

the scale, but these fractions are seldom used in business. It

will be interesting to notice that-|^ and iboth give perfect rep-

etends in the duodecimal scale, and that they possess the same

properties as perfect repetends in the decimal scale.

There seems to have been a natural tendency towards a duo-

decimal scale. Thus, a large number of things are reckoned

by the dozen, and this scale is even extended to the gross and

the great-gross ; that is, to the second and the third powers of

the base. Again, in our naming of numbers, the terms eleven

and twelve seem to postpone the forming of a group until Ave

reach a dozen. A similar fact appears in extending the multi-

plication table to include twelve times, since, with the deci-

mal scale, it could conveniently stop with nin-e or ten times

The division of the year into twelve months, the circle into

twelve signs, the foot into twelve inches, the pound into twelve
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ounces, etc., are each a further indication of the same ten-

dency.

Change of Base.—The objections to the decimal base have

led scientific men to advocate a change in our scale of numer-

ation and notation. Such a change would, without doubt, be

a great advantage, both to science .and to art; yet the practi-

cal difficulties attending such a change are so great that it

seems to be almost impossible. A change in the base would

require a complete change in the oral language of arithmetic,

*The decimal scale is so interwoven with the speech of nations,

that such a change could be effected only after years of

labor. For a while, it would be necessary to have two methods

of arithmetic taught and in use, as in Europe at the time of

the transition from the Roman to the Arabic system of nota-

tion. The learned would soon adopt the new method, but the

common people would cling with such tenacity to the old, that

even a century might intervene before the new method would

become generally established.

Will this change ever be made ? is a question which is

sometimes asked. I do not know
;
but I am strongly in favor

of it, and believe it possible. The diffusion of popular educa-

tion will prepare the way for it, by removing the difficulties of

its adoption. These difficulties, though great, are not insur-

mountable. Changes of notation have taken place in several

different nations, and some nations have changed two or three

times. The Greeks changed theirs, first for the alphabetic,

and afterwards, with the rest of the civilized world, for the

Arabic systeni. The Arabs themselves first adopted the Greek,

and afterwards changed it for the Hindoo method. The peo-

ple of Europe changed from the Roman to the Arabic system
even as late as the fourteenth century, though it took one oi

two centuries to effect the transition. What was done thus

early in the history of science, could, with the increased intel-

ligence of our people, be much more readily accomplished at

the present day. A writer in one of our American periodicals
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says:
" The probability is that it will be done. The question

is one of time rather than of fact, and there is plenty of time.

The diffusion of education will ultimately cause it to be de-

manded."

It is a curious fact, and one Worthy of remembrance, that

Charles XII. of Sweden, a short time before his death, while

lying in the trenches before the Norwegian fortress of Freder-

ickshall, seriously deliberated on a scheme of introducing the

duodecimal system of numeration into his dominions.



CHAPTER Y.

OTHER SCALES OF NUMERATION.

AS
we have seen, any number might have been taken as the

basis of the scale of numeration, the number ten, the

basis of our present scale, being selected from the circumstance

of there being ten fingers on the two hands. Some other scales

have actually existed, and it will be interesting to notice, in

various languages, traces of an earlier and simpler mode of

reckoning. In order to a clearer notion of the subject, it may
be premised that a scale whose basis is two is called Binary ;

three, Ternary ; four. Quaternary ; five, Quinary; six. Senary;

seven, Septenary ; eight, Octary ; nine, Nonai'y ; ten. Denary;

twelve, Duodenary, etc.

The earliest method of numeration was that of combining
units in pairs. It is still familiar among sportsmen, who
reckon by braces or couples. Some feeble traces of the Binary

system are found in the early monuments of China. Fouhi,

the founder and first emperor of that vast monarchy, is vener-

ated in the East as a promoter of geometry and the inventor

of a science, the knowledge of which has been lost. The em-

blem of this occult science appears to consist of eight separate

clusters of three parallel lines or trigrams, drawn one above

the other after the Chinese manner of writing, and represented

either as entire or broken in the middle. These varied tri-
«

grams were called Koua or suspended symbols, from the cus-

tom of hanging them up in the public places. In the formation

of such clusters, we may perceive the application of the binary

(120)



OTHER SCALES OF NUMERATION. 121

scale as far as three ranks, or the number eight. The entire

lines are supposed to signify one, two, or four, according' to

their order, while the broken lines are valueless, and serve

merely to indicate the rank of the others. If this be true, it

furnishes an example of a species of arithmetic with the

device of place, possessing an antiquity of more than 3000

years.

The Binary scale, though never fully adopted by any nation

as a method of counting, has been recommended by one of the

most celebrated modern philosophers, Leibnitz, as presenting

many advantages, from its enabling us to perform all the

operations in symbolic arithmetic by mere addition and sub-

traction. Such a system would, of course, require but two

symbols, unity and zero, by means of which all numbers could

be expressed. Thus, two would be expressed by 10, three by

11, four by 100, five by 101, six by 110, seven by 111, eight

by 1000, etc. This system was studiously circulated by its

author by means of scientific journals and his extensive cor-

respondence ;
and was communicated by him to Bouvet, a

Jesuit missionary at Pekin, at that time engaged in the study
of Chinese ambiguities, and who imagined that he had discov-

ered in it a key to the explanation of the Cova, or lineations

previously referred to.

This system was also recommended by the theological idea

associated with it, of which it was claimed to be the represent-

ative. As unity was considered the symbol of Deity, the forma-

tion of all numbers out of zero and unity was considered, in

that age of metaphysical di'eaming, as an apt image of the crea-

tion of the world, by God, from chaos. It was with reference to

this view of the binary arithmetic, that a medal was struck, bear-

ing on its obverse, as an inscription, the Pythagorean distich,

Numero Deus impari gandet, and on its reverse the appropri-

ate verse descriptive of the system which it celebrated. Omnibus
ex nihilo ducendis sufficit Unum. The good Jesuit, who
seemed to have caught the spirit of Chinese belief, regarded
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the Cova, which were supposed to conceal great mysteries, as

the symbols of binary arithmetic, as a most mysterious testi-

mony to ihc uuity Oi ihe Deily, and as containing within them

the germ of all the sciences.

To count by threes was another step, and this has been pre-

served by sportsmen under the term leash, meaning the strings

by which three dogs, and no more, can be held at once in the

hand. The numbering by fours has had a more extensive

application; it was evidently suggested by the custom of tak-

ing, in the rapid counting of objects, a pair in each hand, and

thus reckoning by fours. English fishermen, who generally
count in this way, call every double pair (of herring, for

instance),, a throw or cast ; and the term warp, which origin-

ally meant to J/irot^, is employed to denote /bitr, in various

articles of trade. It is alleged that the Guaranis and Sulos,

two of the lowest races of savages inhabiting the forests of

South America, count only by fours ; at least they express the

number five hj four and one, six by four and two, seven by

four and three, etc. It has been inferred, also, from a passage
in Aristotle, that a certain tribe of Thracians were accustomed

to use the quaternary scale of numeration.

The Quinary system, which reckons by fives, or pentads,
has its foundation in the practice of counting the fingers of

'

one hand. It appears, from the statements of travellers, to

have been adopted by various savage nations. Thus, certain

tribes of South America were found to reckon hj fives, w^hich

they called hands. In counting six, seven, and eight, they
added to the word handihe names one, two, three, etc. Mungo
Park found that the same system was practiced by the Yolofs

and Foulahs of Africa, who designate ten by two hands, fifteen

by three hands, etc. The quinai'y system seems also to have

been formerly used in Persia; the word pende, which denotes

five, having the same derivation as pentcha, which signifies

a hand. It is even partially used in England among whole-

sale traders. In reckoning articles delivered at the warehouse,
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the person who takes charge of the tale, having traced a long

horizontal line, continues to draw, alternately above and below

It, a warp, or four vertical strokes, each set of which he crosses

by an oblique score, and calls out tally as often as the number

Jioe is completed. This custom is a very general one in

assemblies where votes are counted, and in similar circum-

stances elsewhere.

The Senary method, so far as we can learn, was never used

by any tribe or nation; at least never arose spontaneously.

It is said to have been adopted at one time in China by the

order of a capricious tyrant, who, having conceived an astro-

logical fancy for the number six, commanded its several combi-

nations to be used in all concerns of business or learning

throughout his vast empire.

The Septenary scale has not, so far as we can learn, been

used anywhere. The number seven has been regarded as a

kind of magic number, but nothing in nature suggested the

method of counting by sevens. The division of the year into

periods consisting of seven days each, a custom among nearly

all nations, has given the number seven a wide distinction, and

its frequent use in the Bible has caused it to be regarded as

a sacred number, the basis of a celestial system of reckoning.

The Octary scale, also, though it would possess many advant-

ages, and has been recommended by scientific writers, has

never made its appearance in any language. A Nonary scale

has also never been used, and would be the most inconvenient

of the smaller scales except the septenary.

The Denary scale is the system which has prevailed among
all civilized nations, and has been incorporated into the very

structure of their language. This universal method manifests

the existence of some common principle of numbering, which

was the practice, so familiar in the earlier periods of society,

of reckoning by counting the fingers on both hands. The

origin of the terms used in the more polished ancient languages

is not easily traced, but in the roughness of savage dialects
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these names vary less from the primitive words. The Muysca
Indians were accustomed to reckon as far as ten, which they
called quihicha or a, foot, referring, no doubt, to the number of

toes on their bare feet; and beyond this number they used

terms equivalent to foot one, foot two, etc., for eleven, twelve,

etc. Another South American tribe called ten, tunca, and

merely repeated the word to signify a hundred, or a thousand,

thus: tunca-tunca, tunca-tunca-tunca. The Peruvian language
was actually richer in the names of numerals than the Greek

or Latin. The Romans went no higher than mille, a thou-

sand, and the Greeks than fivpia, or ten thousand. But the

Peruvians had the expressions, A,mc, one; chunca, ten; pachac,
a hundred; huaranca, a thousand; and hunu, o, mWWon. It

appears from an early document, that the Indian tribes of New
England used the Denary scale, and had distinct words to ex-

press the numbers as far as a thousand. The Laplanders join

the cardinal to the ordinal numbers; thus, for eleven they say

auft nubbe lokkai, that is, one to the second ten. The origin

of the numerals in our own dialect will be found treated at

greater length in another place.

The mode of reckoning by twelves or dozens, may be sup-

posed to have had its origin in the observation of the celestial

phenomena, there being twelve months or lunations commonly
reckoned in a solar year. The Romans likewise adopted the

same number to mark the subdivisions of their unit of measure

or of weight. The scale appears also in our subdivisions of

weights and measures, as twelve ounces to a pound, twelve

inches to a foot
;
and is still very generally employed in

wholesale business, extending to the second and even to the

third term of the progression. Thus, twelve dozen, or 144,

make the long hundred of the northern nations, or the gross

of traders; and twelve times this again, or 1728, make the

double or great gross.

The scale of numeration by twenties has its foundation in

nature, like the quinary and denary. In a rude state of

society, before the discovery of other methods of numeration,
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men might avail themselves for this purpose, not merely of the

fingers on the hands, but also of the toes on the naked feet
;

and such a practice would naturally lead to the formation of a

vicenary scale of numeration. The languages of many tribes

indicate this method, and many savage tribes do thus actually

reckon. It is said of the inhabitants of the peninsula of Kam-

schatka, that "it is very amusing to see them attempt to reckon

above ten; for having reckoned the fingers of both hands, they

clasp them together, which signifies ten; then they begin at their

toes and count twenty, after which they are quite confused and

cry matcha, where shall I take more?" Among the Caribbees

who constituted the native population of Barbadoes and other

islands of the Caribbean sea, the numeration beyond five was

carried on by means of the fingers and toes, and their numer-

ical language became generally descriptive of their practical

method of counting. The Abipones, an equestrian people of

Paraguay, to express five show the fingers of one hand; to

express ten, the fingers of both hands; "for twenty, their

expression is pleasant, being allowed to show all the fingers of

their hands and the toes of their feet."

Traces of reckoning by scores or twenties, are found in our

own and other European idioms. The expression threescore

and ten is familiar. The term score itself, which originally

meant a notch or incision made on a tally to signify the suc-

cessive completion of such a number, seems to indicate that

such a mode of counting was most familiarly used by our ances-

tors. The vicenary scale seems to have prevailed very exten-

sively among the Scandinavian nations, as is shown by the

vestiges of it both among them and the languages partly

derived from them. The French language has no term for the

numbers in the second series of the denary scale above soix-

ante or sixty. Eighty is expressed by quatre-vingts, four
twenties, and ninety by quatre-vingts-dix, four tioenties and

ten. The people of Biscay and Armorica are said still to

reckon by the powers of twenty, and, according to Humboldt,
the same mode of numeration was employed by the Mexicans.



CHAPTER VI.

A DUODECIMAL SCALE.

AS
already explained, any number may be made the basis

of a system of numeration and notation. The decimal

basis is a mere accident, and in some respects an unfortunate

one, both for science and art. The duodecimal basis would

have been greatly superior, giving greater simplicity to the

science, and facilitating its various applications. In this

chapter it will be explained how arithmetic might have been

developed upon a duodecimal basis.

In order to make the matter clear, I call attention to two or

three principles of numeration and notation. First, the bases

of numeration and notation should be the same
;
that is, if we

write numbers in a duodecimal system, we should also name
numbers by a duodecimal system. Second, in naming num-

bers by any system, we give independent names up to the base,

and then reckon by groups, using the simple names to number

the groups. Bearing these principles in mind, we are ready
to understand Numeration, Notation, and the Fundamental

Rules in Duodecimal Arithmetic.

Numeration.—In naming numbers by the duodecimal

system, we would first name the simple numbers from one to

eleven, and then, adding one more unit, form a group, and name

this group twelve. We would then, as in the decimal system, use

these first names to number the groups. Naming numbers in

this way, we would have the simple names, one, two, three, etc.,

up to twelve. Continuing from twelve, we would have one and

twelve, two and twelve, three and twelve, etc., up to twelve and

twelve, which we would call two twelves. Passing on from this

(126)
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we would have two twelves and one, two twelves and two, etc.,

to three twelves, and so on until we reach twelve twelves, when

we would form a new group containing ticelve twelves, and

give this new group a new name^ as gross, and then employ
the first simple names again to number the gross. In this way
we would continue grouping by twelves, and giving a new

name to each group, as in the decimal scale by tens, as far as

is necessary.

These names, in the duodecimal system, would naturally

become abbreviated by use, as the corresponding names in the

decimal system. Thus, as in the decimal system te?i was

changed to teen, we may suppose twelve to be changed to teel,

and omitting the " and" as in the common system, we would

count one-teel, two-teel, thir-teel, fou7'-teel, fif-teel, six-teel, etc.,

up to eleven-teel. Two-twelves might be changed into two-tel,

or twen-tel, corresponding to two-ty or twenty, and we would

continue to count twentel-one, twentel-two, etc. Three-twelves

might be contracted into three-tel or thirtel, corresponding to

three-ty or thirty of the decimal system; four-twelves to

fourtel, five twelves to fiftel, etc., up to a gross. Proceeding

in the same manner, a collection of twelve gross would need

a new name, and thus on to the higher groups of the scale.

In this manner, the names of numbers according to a duo-

decimal system could be easily applied. Were we actually

forming such a system, the simplest method would be to intro-

duce only a few new names for the smaller groups, and then

take the names of the higher groups of the decimal system,

with perhaps a slight modification in their orthography and

pronunciation, to name the higher groups of the new scale.

Thus, million, billion, etc., could be used to name the new

groups without any confusion, as they do not indicate any
definite number of units to the mind, but merely so many col-

lections of smaller collections. Indeed, even the word thou-

sand, with a modification of its orthography, say thousun,

might be used to represent a collection of twelve groups,
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each containing a gross, without any confusion of ideas.

Their etymological formation would not be an objection of any

particular force, as no one in using them thinks of their pri-

mary signification. These terms are not suggested as the

best, but as the simplest in making the transition from the

old to the new system. It will also be noticed that our

departure in the decimal scale from the principle of the sys-

tem, by using the terms eleven and twelve, would facilitate the

adoption of a duodecimal system.
To illustrate the subject more fully, let us adopt the names

suggested, and apply them to the scale. Naming numbers

according to the method explained, we would have the names

as indicated in the following series :

one gross and one
one gross and two
two gross and Ave
six gross and seven
ten gross and eight
eleven gross and nine
One Ihousun
one tlionsun and five
one thousun four gross
and seven

two tliousun seven gross
and fortel-one

Notation.—The writing of numbers by the duodecimal

system would be an immediate outgrowth of the method of

naming numbers in this system. As in the decimal system of

notation, it would be necessary to employ a number of char-

acters one less than the number of units in the base, besides

the character for nothing. Since the group contains twelve

units, the number of significant characters would be eleven—
two more than in the decimal system. For these characters

we should use the nine digits of the decimal system, and then

introduce new characters for the numbers ten and eleven. To

illustrate, we will represent ten by the character $ and eleven

by n.

These characters, with the zero, would be combined to rep-

resent numbers in the duodecimal scale in the same manner as

the nine digits represent numbers in the decimal scale. Thus,

one
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twelve would be represented by 10, signifying one of tlic

groups containing twelve; 11 would represent one and twelve,

or oneteel ; 12 would represent two and twelve, or twoteel ; 13

would represent thirteel; 14, fourleel; 15, fifteel, etc. Con-

tinuing thus, 20 would represent two twelves, or twentel; 21,

twentel-one ; 23, twentel-three, etc. The notation of numbers

up to a thousun may be indicated as follows:—
one, 1

two, 2

three, 3

etc., etc.

nine, 9

ten, *

eleven, n

twelve, 10

oneteel, 11

twoteel, 12

twentel, 20

twentel-one, 21

twentel-ten, 2*

tweutel-eleven, 2n

thirtel, 30

thirtel-two, 32

thirtel-five, 35

thirtel-ten, 3i>

thirtel-eleven, 3n
one gross, 100

one thousun, 1000

Extending the series as explained above, we should have

the following notation table :
—
Table.
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and multiplication table, from which we could readily derive

the elementary differences and quotients. The rest of the sci-

ence would be readily acquired, as all of its methods and

principles would remain unchanged. Indeed, so readily could

the change be made, that in view of the great advantages of

the system, one is almost ready to believe that the time will

come when scientific men will turn their attention seriously to

the matter and endeavor to effect the change.

Fundamental Operations.—In order to show how read-

ily the transition could be made, I will present the method of

operation in the fundamental rules. We would proceed first

to form an addition table containing the elementary sums,

which, as in the decimal system, we would commit to memory.
From this we could readily derive the elementary differences

used in subtraction. Such a table is given on page 131.

By means of this table we can readily find the sum or dif-

ference of numbers expressed in the duodecimal system. To

illustrate, required the sum of 487 n, 5>j38, operation.

63nT, "tSSG. The solution of this would be as 487n
follows: Adding the column of units, 6 units 5<i>38

and 7 units are 11 units, and 8 units are 19 63n7

units, and n units are 28 units, or 2 twelves

and 8 units
; writing the units, and carrying

*"

2 to the column of twelves, we have 2 twelves and 5 twelves

are 7 twelves, and n twelves are 16 twelves, and 3 twelves

are 19 twelves, and 7 twelves are 24 twelves, or 2 gross and

4 twelves; writing the twelves, and carrying 2 to the third

column, we have 2 gross and 8 gross are * gross, and 3 gross

are 11 gross, and * gross are In gross, and 8 gross are 27 gross,

or 2 thousuns and 7 gross; 2 thousuns and 4> thousuns are 10

thousuns, and 6 thousuns are 16 thousuns, and 5 thousuns are

In thousuns, and 4 thousuns are 23 thousuns; hence the

amount is 23748.

To illustrate subtraction let it be required to find the differ-
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ADDITION AND MULTIPLICATION TABLES IN THE DUODECIMAL SCALE.

Ki'tOV 1 V
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cnce between 6428 and 2564. We would solve this as follows:

Subtracting 4 units from 8 units we have 4

units remaining; we cannot take 6 twelves operation.

fi'om 2 twelves, so we add 10 twelves and have 6428

12 twelves; 6 twelves from 12 twelves leaves

8 twelves; carrying 1 to 5 we have 6 gross;
34>84

we cannot take 6 gross from 4 gross; adding 10 as before we
have 6 gross from 14 gross leaves $ gross; adding 1 thousun

to 2 thousuns, we have 3 thousuns from 6 thousuns leaves 3

thousuns; hence the remainder is 3*84.

In order to multiply and divide, we first form a multiplica-

tion table similar to that now used in the decimal system, and

commit it to memory. This table need not extend beyond
" twelve times," as in our present system there is no need of

extending beyond "ten times." From this table of elementary

products, we can readily derive the table of elementary quo-

tients as we do in the decimal system. Such a table will be

found on page 131.

It will be interesting to notice several peculiarities of this

table, similar to those of the decimal system. As the column

of "five times" ends alternately in 5 and 0, making it so

easily learned by children, so the column of "six times" in

the duodecimal table will end alternately in 6 and 0. In our

present table the sum of the two terms of each product in the

column of "nine times" equals nine, so in the duodecimal

table, the sum of the two terms of each product in the column

of "eleven times" equals eleven. We also notice that each

product in the column of " twelve times" ends in 0, as does

each product in the column of "ten times" of our present

table.

By means of the multiplication table we can readily find

the product or quotient of numbers expressed in the duodeci-

mal scale. To illustrate multiplication, let it be required to

find the product of 54*8 by 3n7. We would solve this as

follows: Using the first term of the multiplier, T times 8 are
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48, 7 times * are 5*, and 4 are 62, 7 operation.

times 4 are 24 and 6 are 2<i>, 1 times 5 ^^*^
3nt

are 2n and 2 are 31, making the first

partial product 31*28; multiplying by 4.^04
n we have n times 8 are T4, II times * 14280
are 92 and T are 99, n times 4 are 38 and "ToWTfiS
9 are 45, II times 5 are 47 and 4 are 411

;

3 times 8 are 20, 3 times $ are 26 and 2 are 28, 3 times 4 are

10 and 2 are 12, 3 times 5 are 13 and 1 are 14. Adding up
the partial products, we have as the complete product, 1953768.

To illustrate division, let it be required to find the quotient

of 1953768 divided by 3n7. We would
ni>T.i, a n^m^r•' OPERATION.

solve this as follows : We find that the
3n7)1953768(54'i>8

divisor is contained in the first four 179n

terms of the dividend 5 times, and mul- 1747

tiplying 3n7 by 5 we have 179n
;
sub- 13*4

tracting this from the dividend we 3636

have a remainder, 174; bringing down 3374>

the next figure of the dividend and 2788

proceeding as before, we have for the "___
quotient 54^1-8.

The method of finding the square or cube root of a number

expressed in the duodecimal scale is similar to that used in

the decimal scale, as may be shown by an operation.

example. Thus, find the square root of n-53"01(347

n5301. The greatest square in ll is 9
;

_

subtracting and bringing down a period, o^A
and dividing by 2 times 3 or 6, we find the

^^

second term of the root to be 4; complet- qnOl

ing the divisor and multiplying 64 by 4,

we have 214; subtracting and bringing down, Ave have 3n01,

and dividing by 2 times 34, or 68, we have 7 for the last figure

of the root; completing the divisor and multiplying it by 7,

we have 3n01, which leaves no remainder.

The above tables and calculations seem awkward to one
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who is familiar with the decimal system; but it should be

remembered that a beginner would learn the addition and mul-

tiplication tables and the calculations based on them, just as

readily as he now learns them in the decimal system. The

practical value of such a system, in addition to what has

already been said, may be seen in the calculation of interest,

the rules for which would be greatly simplified on account of

the relation of the number of months in a year (12) to the

base, and also of the relation of the rate to the same, which

would be some 8% or 9% ;
that is, 8 or 9 per gross. I hope to

be able in a few years to publish a small work in which the

whole science of arithmetic shall be developed on the duodeci-

mal basis.
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GREEK ARITHMETIC.

GREEK
Arithmetic, like that of all other nations of anti-

quity, began in the representation of numbers by strokes or

straight lines. This system, in the progress of thought and

civilization, was finally discarded, and the letters of the alpha-

bet taken as the symbols of numbers. After adopting the*

letters of their alphabet, the Greeks seem to have had no less

than three distinct methods of notation. They used the

letters in their natural order, to signify the smaller ordinal

numbers. In this way the books of Homer's Iliad and

Odyssey are usually marked. They employed also the first

letters of the words for numerals as abbreviated symbols, mak-

ing use of an ingenious device for augmenting the powers of

these symbols; thus, a letter enclosed by a line on each side and

another drawn over the top, as Fl, was made to signify five

thousand times its original value.

A more complete method consisted in the distribution of the

twenty -four letters of their alphabet into three classes, corre-

sponding to units, tens, and hundreds, adding another character

to each class to complete the symbols for all of the nine digits.

This latter method was the one in common use, and that which

was made the basis of their arithmetic. The units from one

to nine inclusive, were denoted by the letters «, /?, y 6, e, r, C, '7,
^

;

the tens by (. «, A, ^, t, f, o, tt, h ; and the hundreds by p, u, r, v, <f>,

X, li', w, :?). Thousands were represented by the first series

with the iota, or dash subscribed, thus: «i/3.
]f, (J

etc. With

these characters they could readily express any number under

(135)
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10,000, or a myriad. Thus, 991 was expressed by Ih ha\ 7382,

by fr-/3; G420, by ok; 4001, by d...

It will be noticed that neither the order nor the number of

characters was considered iu expressing numbers. The value of

the expression was the same in whatever order the letters were

placed ; though as regularity tended towards simplicity, they

generally wrote the characters according to value, from left to

right.

Myriads, or ten thousands, were denoted by the letter M, a

letter representing the number of myriads indicated being

written above it. Thus, ^ denoted 10,000; m. 20,000; ^^

30,000, etc. Thus, also, ^f denoted 370,000 ;
^'™^ 43720000 ;

andM ' '

M,
'

in general, the letter m placed beneath any number had the

same effect as our annexing four ciphers.

This is the notation employed by Eutocius in his commenta-

ries on Archimedes, but it is evidently inconvenient in calcula-

tion. Diophantus and Pappus expressed the myriad more

simply by the two letters Mi; placed after the number, and

afterwards by merely writing a point after it. This enabled

them to express 100,000,000, which was the greatest extent of

the ordinary Greek arithmetic.

This system had been extended by Archimedes and Apollo-

nius, for the purpose of astronomical and other scientific

calculations. Archimedes, in order to express the number
of grains of sand that might be contained in a sphere that had

for its diameter the distance of the fixed stars from the earth,

found it necessary to represent a number which, with our nota

tion, would require sixty-four places of figures; and in order

to do this, he assumed the square myriad, or 100,000,000, as a

new unit, and the numbers formed with these new units he

called numbers of the second order
;
and thus he was enabled

to express any number which in our notation requires sixteen

figures. Assuming again 100,000,000' as a new unit, he could

represent any number that requires in our scale twenty-four
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figures, and so on; so that by means of his numbers of the

eighth order, he could express the number in question, which

requires sixty-four figures in our scale.

By this system all numbers were separated into periods or

orders of eight figures. This was afterwards considerably

improved by Apollonius, who, instead of periods of eight

places, which were called by Archimedes octates, reduced num-
bers to periods of four places ;

the first of which, on the left,

were units, the second period myriads, the third double myri-
ads or numbers of the second order, and so on indefinitely.

In this manner Apollonius was able to write any number that

can be expressed by our system of numeration
;
as for example,

if he had wished to represent the circumference of a circle

whose diameter was a myriad of the ninth order, he would

have written it thus :

y.nviE. da^e. y^fTrd. (.^X(i. ^w/^r. ^Xf^Y- 7,"^^' ^^P)v. fiund-

3.1415 9265 3589 7932 3846 2643 3832 7950 2824

The learned astronomer Ptolemy modified this system in its

descending range by applying it to the sexagesimal subdivisions

of the lines inscribed in a circle. He likewise advanced an

important step, by employing a small or accentuated o to supply
the place of any number M^anting in the order of progression.

The Greek method of expressing fractions was also peculiar.

An accent set on the right of a number, made of that number
the denominator of a fraction whose numerator was a unit,

thus, 7'— i, <5'=|, fd'=eV> pi^^'^^rh} 6tc. When the numerator is

not unity, the denominator is placed as we set our exponents.

Thus, I'e^^ represented 15", or H, and c^''" represented V^\ or

1 2 !•
The fraction ^ had a particular character, as C,

C, or K, The notation of the Greeks was not adapted to the

descending scale, and consequently they had no decimals.

The notation of the Greeks, though much inferior to that of

the present day, was formed upon a regular and scientific

basis, and coiild be employed with considerable convenience

as an instrument of calculation. We will present two or three



138 THE rillLOSOPHY OF ARITHMETIC.

examples taken from Barlow's Theory of Numbers, from

which some of the previous facts are gathered.

Addition.—The following example in addition is from

Eutocius, Theorem 4, of the Measure of the Circle.

w^.y^'ta 847 3921

^.^ 60 8400

?\v .(iTKa 908 232i

The method, it will be seen, is similar to compound addition,

but is simpler on account of the constant ratio of ten between

any character and the succeeding one.

Subtraction.—The following example in subtraction is from

Eutocius, Theorem 3, on the Measure of the Circle.

e.y;tV 93636

^':yv e 23409

c~^ YO22Y

The method is simple, proceeding from right to left as in

our subtraction, which seems so obviously advantageous and

simple that one can hardly conceive why the Greeks should

ever proceed in the contrary way, although there are many
instances which make it evident that they did, both in addition

and subtraction, work from left to right.

Multiplication..—In multiplication they most co'mmonly pro-

ceeded in their operations from left to right, as we do in mul-

tiplication in algebra, and their successive products were

placed without much apparent order; but as each of their

characters retained always its own proper value, in whatever

order they stood, the only inconvenience of this was, that it

rendered the addition of them a little more troublesome.

The following example is

from Eutocius. Asitisdiffi- pvj
r, ^

cult to remember "the value '""^

of all the Greek characters,
•;^^^., Q"r<2,"'^"i"^'

we will indicate the opera-
''

g Z"\"b'^°
tion by writing 1°, 2°, 3°, j-^ 2'"3'"4" 9°
etc., for the series of units
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1', 2', 3', etc., for the series of tens; 1", 2", etc., for the

hundreds, etc., and denote the myriads by writing m as a,n

exponent.

Division.—The division of the Greeks was still more intr-

cate than their multiplication, for which reason it seems they

generally preferred the sexagesimal division, and no example
is left at length by any of those writers except in the latter

form
;
but these are sufficient to throw some light on the pro-

cess they followed in the division of common numbers, and

Delambre has accordingly supposed the following example :

r;i/3.7-«0(ja>.7
332'" 3"'3"2'9°^1'"8"2'3°

P'^l^-f- ~auKy 182 3 j^///g//2/30

pr.Tiid

PfJE.T^V

6.a?j<f)

182
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nius, quite well fitted for an instrument of calculation; and

though somewhat cumbrous in its structure, was capable of

performing operations of very considerable difficulty and mag-
nitude.

It will be seen, however, that though much more refined and

pliant than that of the Romans, the notation of the Greeks is

very. much inferior to the common or Hindoo method
;
and one

cannot help wondering that so ingenious and philosophical a

people failed to conceive the simple idea of place value, and

construct a system of notation upon it. This seems all the

more astonishing when we remember that Archimedes invented

a system of octates, or system of eights, which was subse-

quently improved by Apollonius, by making the periods con-

sist of only four places, and dividing all numbers into orders

of myriads. In this form, as Barlow remarks, it seems most

astonishing that he did not perceive the advantage of making
the periods to consist of a less number of characters; for, hav-

ing given a local character to his periods of four, it was only

necessary to have done the same for the single digits, in order

to have arrived at the system in present use. And this is

the more singular, as the use of the cipher was not unknown

to the Greeks, being always employed in their sexagesimal

operations where it was necessary ;
and consequently the step

between this improved form of their notation and that of the

present system was extremely small, although the advantages

of the latter when compared with the former are incalculably

great. It seems to have been the lot of the metaphysical

mind of the Hindoos to make this "brilliant invention of the

decimal scale," one of the greatest improvements in the whole

circle of the sciences, and to which we are indebted for all the

remarkable advances in modern analysis.



CHAPTER VIII.

ROMAN ARITHMETIC.

ri^^HE arithmetic of the Romans was quite inferior to that of

X the Greeks, a necessary consequence of the inferiority of

the method of notation adopted. The method of notation,

though usually ascribed to the Romans, was probably invented

by the Greeks, and communicated by them to the Romans, who

in turn transmitted it to their successors in modern Europe.

It no doubt originated in the use of simple strokes, variously

combined, to represent numbers. Subsequently it was found

convenient to represent numbers by the letters of the alphabet,

and the numerical strokes were finally displaced by such alpha-

betic char-acters as most nearly resembled them.

The origin of the Roman characters is not certainly known;
but the theory, as given by Leslie, and by many regarded as

correct, is interesting and plausible. It is certain that the

first numerical characters consisted simply of strokes or straight

lines. This was the method primarily used by nearly every

nation of antiquity, and was the beginning of a philosophical

and universal system alike intelligible to all nations. Such

characters are still preserved in the Roman notation with very

little change, and were probably adopted before the importation

of the alphabet itself, by the Grecian colonies that settled

Italy and founded the Latin commonwealth. Assuming, then,

a perpendicular line
|
to signify one, two such lines

| |
to signify

two, three lines
1 1 1

to signify three, and so on up to ten, and we

have the first series of the numerical scale. They might then

(141)
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be supposed to tbruvv a dash across the last stroke or unit, to

mark the completion of t-he series; and thus, a cross, X,
would come to signify ten. The continued repetition of this

mark would denote twenty, thirty, etc., until they reached a

hundred, or ten tens, which completes the second series, and

might be denoted by adding another dash to the mark for ten,

or by merely connecting three strokes, thus C The repetition

of this symbol would, in like manner, indicate the successive

hundreds, the tenth of which would be marked by the addition

of another stroke, so that four combined strokes, M) would

express a thousand.

Such were probably the symbols originally employed in the

Roman notation; in process of time it would be perceived that

the inconvenience in writing, arising from so many repetitions

of the same character, might be avoided by adopting symbols
for the intermediate numbers; and it was seen that these

might be furnished by the division of the symbols already in

use. Thus, having parted in the middle the two strokes, X,
either the under half, /\, or the upper half, V. was employed
to signify yif6, or the half of ten. Next, ioT fifty, the half of

a hundred, the symbol Q was divided into two equal parts, p
and |_, either of which represented fifty. Again, the symbol
for thousand having come to assume a rounded shape, thus

PQ, or thus CD, the half of this, either CI, or D, was taken to

represent the half of one thousand or flee hundred. The

symbol (3, to represent a hundred, would, in process of time,

being frequently made, have its corners rounded and attain

the form C- Lastly, noticing that these characters closely

resemble some of the letters of the alphabet, it was agreed to

employ those letters as the symbols of the numbers mentioned.

The notation of numbers by coipbined strokes, was evi-

dently founded in nature, and may be regarded as the begin-

ning of a philoso])hical language of arithmetic. . That thia

was the foundation of the Koman system is confirmed from the

analogous practice of other nations. It is quite clear that the
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Egyptians and Chinese must liave followed the same method.

The inscriptions on the ancient obelisks present a few numerals

which are easily distinguished. The substitution of capital

letters for the combined strokes which they chanced most to

resemble, though it gave uniformity to the system of notation,

prevented any farther improvements of the system. Tlie only

simplification which the Romans appear to have introduced,

was to diminish the repetition of letters by reckoning in some

cases backwards, as in lY, which was originally represented

by four strokes, and IX, which was probably at first wn-itten

Villi.

Their method of representing large numbers was a little

different from that now used, as may be seen by the following

examples :

DorD MorCID 133 CCi33 1333 CCC1333

500 1000 5000 10,000 50,000 100,000.

In illustration, it is interesting to notice that Cicero in his

fifth oration against Yerrcs expresses 3G00 by C13 CI3 CI3 13C.

The Romans often contracted or modified the forms of their

numerals, especially in carving inscriptions upon stones, in

which case the abbreviated letters were called lapidary char-

acters.

The marks for any number could also be augmented in power
one thousand times, either by enclosing them with two hooks or

C's, or by drawing a line over them. Thus, CXD, or X denoted

10,000, and cTTviM given by Pliny, means 156,000,000.

Sometimes a letter was placed over another to indicate their

product ; thus, j^j
would express 500,000. The multiplier was

also sometimes written like an exponent, thus IIP was used

to express tJwee hundred. In expressing very large numbers,

points were sometimes interposed: thus, Pliny writes XYI.
XX.DCCCXXIX for 1,020,829. It may be remarked that if this

practice had become more general it would probably have

effected a material improvement of the system.
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In the latter ages of the Roman Empire, the small letters

of the alphabet seem to have been used in imitation of the

numeral system of the Greeks. The letters a, b, c, d, e, f,

g, h, aud i represented the nine digits 1, 2, 3, 4, 5, 6, 7, 8, and 9
;

the next series k, 1, ni, n, o, p, q, r, and s expressed 10, 20, 30,

40, 50, 60, TO, 80, and 90
;
and the remaining letters t, u, x,

J, and z denoted 100, 200, 300, 400, and 500. To represent
the rest of the hundreds it was necessary to employ capitals

or other characters, and 600, TOO, 800, and 900 were repre-

sented by I, V, hi and hu. But this mode of notation never

obtained any degree of currency, being mostly confined to

those foreign adventurers from Greece, Egypt or Chaldea, who,

pretending to skill in judicial astrology, were enabled to prey
on the credulity of the wealthy Romans.

In modern Europe the Roman numerals were supplied by
Saxon characters. Thus, in the accounts of the Scottish Ex-

chequer for the year 1331, the sum of £6896 5s. 5d. stated as

paid to the King of England is thus marked:
n C XX

vj. viij. iiij. xvj. ij. v, s. v. d.

The Roman system, as now used, employs seven characters,

of which I represents one, Y five, X ten, L fifty, C one hun-

dreil, J) five hundred, M one thousand. To express other

numbers these characters are combined according to the fol-

lowing principles:—
1. Every time a letter is repeated its value is repeated.

2. When a letter is placed after one of greater value, the

sum of their values is the number expressed.

3. "When a letter is placed before one of a greater value, the

difference of their values is the number expressed.

4. When a letter stands between two letters of a greater

value, it is combined with the one following it.

5. A letter is placed before one of its own order only, or the

unit of the next higher order.

6. A dash over a letter increases its value a thousand fold.
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In accordance with the fifth principle it would be incorrect

to write VC for ninety-jive, or IC for ninety-nine. It is also

to be noticed that the letter V is never used before a letter of

greater value, since the only case in which it could be thus

used according to the fifth principle is before X, giving VX
ioY five, which is more concisely expressed by V itself

In expressing numbers by the Roman method we always
write the different orders of units successively, beginning with

the higher orders. Thus, in expressing four hundred and

ninety-nine, we would not write ID, though this, by principle

second, would be the difference of one and five hundred, but

we first write CCCC for four hundred, then XC for ninety,

and then IX for nine, giving CCCCXCIX.
It may be interesting to notice, however, that though the

Roman method was not employed in numerical calculations, it

might have been so employed by slightly modifying the usual

mode of notation. Thus, by not using the third principle, but

writing IIII for IV, and Villi for IX, or by using some

mark to show that the letters written according to that prin-

ciple are taken together, as XXIV, we can perform the four

fundamental operations without much inconvenience. To illus-

trate, we give a problem in multiplication, with its explanation.

Explanation.—VIII multiplied
, ^fV ^ T TTT V 1

• T ^ OrERATION.
by VII equals LVI, X multiplied VVTFT
by VII equals LXX, L multiplied XXXVII
by VII equals CCCL; III multi- _

piled by X equals XXX, X multi- PCLXX?^^^
plied by X equals C, L multiplied DCLXXX^
by X equals DCL; multiplying by DCLXXX
X a second and third time, and

tumt) XVI
taking the sum of the iour partial

products, we have MMDXVI, or two thousand five hundred

and sixteen. This result may be obtained by multiplying by

VII and XXX; or by II, V, X, and XX, etc. The multipli-

cand also may be variously separated in the multiplication.

10
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It is clear, however, that this operation would be very com-

plicated with large numbers, so much so, indeed, as

to be unfitted for general use, and it is believed that it was not

used in performing numerical calculations. These calculations

were performed by means of counters, or other palpable em-

blems. The instrument generally used was called the Abacas.

Leslie says that "the system of characters among the Romans
was so complex and unmanageable as to reduce them to the

necessity in all cases of employing the Abacus."

The Abacus appears to have continued in use among the

people of Europe until quite a recent period. The counters or

pebbles were, from a corruption of the word algorithm, called

ic England augrim, or awgrym, f^tones. Thus, in Chaucer's

description of the chamber of Clerk Nicholas, he says;
" His almageste and bokes grete and sinale,

His astrelabre, longing for his art,

His augrim stones layen faire apart
On shelves nouchefi at his beddes head "

Indeed, the modern method of arithmetic was not known in

England until about the middle of the sixteenth century ;
and

the common people, imitating the clerks of former times, were

still accustomed to reckon by the help of the awgrym alonei.

Thus, in Shakespeare's comedy of the Winier^s Tale, written

at the beginning of the seventeenth century, a clown, staggered

at a very simple multiplication, exclaims that he must try it

with counters.

Ci.o. Let me see
; Every 'leven wether — tods

; every tod yields— pound and odd shilling; fifteen hundred shorn,—What comes

the wool to? ... I cannot do't without counters.

The Roman method is now chiefly used to denote the vol-

umes, chapters, sections and lessons of books, the pages of pre-

faces and introductions, to express dates, to mark the hours on

clock and watch faces, and in other places for the sake of prom-
inence and distinction.



CHAPTER IX.

PALPABLE ARITHMETIC.

THE
earliest methods of representing numbers in arithmetical

calculation were by means of counters and other palpable

emblems. The objects most generally used among all primitive

nations were little stones or pebbles, from which we derive our

word calculation. Beginning with pebbles or some such sim-

ple objects, as they advanced in civilization these were found to

be insufficient for their purposes, and they invented instruments

to represent numbers, by means of which they were enabled

to calculate with great rapidity and correctness. The Japan-

ese and Chinese at the present day, with their arithmetical

instruments, can add, subtract, multiply and divide as rapidly

and correctly as we can with the Arabic system of notation.

So extensively was this method used by the early nations before

the method of calculating by figures was adopted, that Leslie,

in his treatise on arithmetic, gives it a distinct and detailed

explanation under the head of Palpable Arithmetic. The sub-

ject is so full of interest, both for its own ingenuity and its

relation to our present system, that I think it proper to devote

a chapter to it, and finding a clearer statement of it in Leslie

and Peacock than I could hope to give myself, I have tran-

scribed their description, sometimes word for word.

The early Egyptians performed their computations mainly

by the help of pebbles, and so did the early Greeks and

Romans. In the schools of ancient Greece, the boys acquired

the elements of knowledge by working on the ABAX, asmoolh

( 147 )
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board with narrow rim, so named evidently from the combina-

tion of the first three letters of their alphabet, and resembling
the tablet on which children were formerly accustomed to begin
to learn the art of reading. Pupils were taught to calculate by

forming progressive rows of counters, which consisted of round

bits of bone or ivory, or even silver coins, according to the

wealth or fancy of the individual. The same board, strewed

with fine green sand, a color soft and agreeable to the eye,

served equally for teaching the rudiments of writing and the

principles of geometry.
The ancient writers make frequent allusions to these calculat-

ing boards. Solon, the great Athenian statesman, used to

compare the passive ministers of kings to the counters or

pebbles of arithmeticians which, according to the place they

hold, are sometimes most important, and sometimes utterly

insignificant. The Grecian orators, in speaking of balanced

accounts, picture the settlements by saying that the pebbles

were cleared away and none left. It thus appears that the

ancients, in keeping their accounts, did not arrange the debits

and credits separately, but set down pebbles for the former, and

took up pebbles for the latter. As soon as the board became

cleared, the opposite claims were exactly balanced. It may
be observed that the common phrase to clear one^s scores or

accounts, meaning to settle or adjust them, still preserved in the

popular language of Europe, was suggested by the same prac-

tice of reckoning with counters, which prevailed, indeed, until

a comparatively late period.

The Romans borrowed their Abacus from the Greeks, and

seem never to have aspired higher in the pursuit of numerical

science. To each pebble or counter required for the board

they gave the name of calculus, meaning a small white stone,

and applied the verb calculare to express the operation of com-

bining or separating such pebbles or counters. The use of

the Abacus, called also the Ilensa Pythagorica, formed an

essentia] part of the education of every noble youth. A small
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box or coffer, called a Loculus, having compartments for hold-

ing the calculi, or counters, was considered as a necessary

appendage. Instead of carrying a slate and satchel to school,
the Roman boy was accustomed to trudge to school loaded
with those ruder implements,—his arithmetical board and his

box of counters.

In the progress of luxury and refinement, dice made of ivory,
called tali, were used instead of pebbles, and small silver

coins came to supply the place of counters. Under the Em-

perors, every patrician living in a spacious mansion and

indulging in all the pomp and splendor of Eastern princes,

generally entertained, for various functions, a numerous train

of foreign ^slaves or freedmen in his palace. Of these, the

librarius, or miniculator, was employed in teaching the

children their letters, the notarius registered expenses, the

rationarius adjusted and settled accounts, and the tabularius

or calculator, working with his counters and board, performed
Avhat computations might be required.

To facilitate the working by counters, the construction of the

Abacus was afterwards improved. Instead of the perpendic-
ular lines, or bars, the board had its surface divided by sets of

parallel grooves, by stretched wires, or even by successive

rows of holes. It was easy to move small counters in the

grooves, to slide perforated beads along the wires, or to stick

large knobs or round-headed nails in the different holes. To
diminish the number of marks required, every column was
surmounted by a shorter one, wherein each counter had the

same value as five of the ordinary kind. The Abacus, instead

of wood, was often, for the sake of convenience and durabil-

ity, made of metal, frequently brass, and sometimes silver.

Two varieties of this instrument seem to have been used by
the Romans. Both of them are delineated from antique
monuments— the first kind by Ursinus, and the second by
Marcus Yelserus. In the former, the numbers are represented

by flattish perforated beads, ranged on parallel wires; and in
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the latter, they are signified by small round counters, moving
iu parallel grooves. These instruments contain each seven

capital divisions, expressing in regular order unita, tens, hun-

dreds, thousands, ten thousands, hundred thousands, and

millions, and as many shorter divisions, of five times the rela-

tive value of the larger ones. With four beads on each of

the long grooves or wires, and one on each corresponding short

one, it is evident that any number could be expressed up
to ten millions. The Roman Abacus also contained grooves
to mark ounces, half-ounces, quarter-ounces, and thirds of an
ounce.

The Romans likewise applied the same word Abacus to an
article of furniture resembling in shape the arithmetical board,
but often highly ornamented, which was destined for the

amusement of the opulent. It was used in a game apparently
similar to that of chess, in which the infamous and abandoned
Nero took particular delight, driving over the surface of the
Abacus with a beautiful ivory quadriga or chariot.

The Chinese have, from the remotest ages, used in all their

computations, an instrument similar in shape and construction
to the Roman Abacus, but more complete and uniform. It

is admirably adapted to the decimal system of weights, meas-

ures, and coins, which prevails throughout the empire. The
whole range includes ten bars, and the calculator may begin
at any one and reckon upwards or downwards with equal
facility, treating fractions exactly like integers—an advantage
of the utmost consequence in practice. Accordingly these

arithmetical machines, of various sizes, have been adopted by
all ranks, from the man of letters to the humblest shopkeeper,
and are constantly used in all the bazaars and booths of Can-
ton and other cities, being handled, it is said, by the native
traders with a rapidity and address quite astonishing.

Among the various nations which regained their independ-
.ence by the fall of the Roman Empire, it was found convenient
in air transactions where money was concerned, to follow the



PALPABLE ARITHMETIC. lol

procedure of the Abacus, in representing numbers by counters

piaued in parallel rows. During the Middle Ages, it became

the usual practice over Europe for merchants, auditors of

accounts, or judges appointed to decide in matters of revenue,

to appear on a covered bank or bench, so called from an old

Saxon, or Franconian word signifying a seat. The term

scaccarium, a Latinized Oriental word, from which was

derived the French and then the English name for the

Exchequer, anciently indicated merely a chess-boa7'd, being

formed from scaccum, one of the pieces in that game.

The Court of Exchequer, which takes cognizance of all

questions of revenue, was introduced into England by the

Norman Conquest. Fitz-Nigel, in a dialogue on the subject,

written about the middle of the twelfth century, says that the

scaccarium was a quadrangular table about ten feet long and

five feet broad, with a ledge or border about four inches high,

to prevent anything from rolling over, and was surrounded on

all sides by seats for the judges, the tellers, and other officers.

It was covered every year, after the term of Easter, with fresh

black cloth, divided by perpendicular white lines or distinc-

tures, at intervals of about a foot or a palm, and again parted by

similar transverse lines. In reckoning accounts, they pro-

ceeded according to the rules of arithmetic, using small coins

for counters. The lov^rest bar exhibited pence, the one above

it shillings, the next pounds, and the higher bars denoted suc-

cessively tens, twenties, hundreds, thousands, and ten thou-

sands of pounds; though, in those early times of penury and

severe economy, it very seldom happened that so large a sum

as the last ever came to be reckoned. The teller sat about the

middle of the table
;
on his right hand, eleven pennies were

heaped on the first bar, and nineteen shillings on the second,

while a quantity of pounds was collected opposite to him, on

the third bar. For the sake of expedition he might employ a

different mark to represent half the value of any bar, a silver

penny for ten shillings, and a gold penny for ten pounds.
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In early times, a checkered hoard, the emblem of calculation,

was hung out, to indicate an office for changing money. It

was afterwards adopted as the sign of an inn or hodelry,

where victuals were sold, or strangers lodged and entertained,

ll is said that traces of this ancient practice may be found even

lit the present day.
The use of the smaller Abacus in assisting numerical com-

putation was not unknown during the Middle Ages. In

England, however, it appears to have scarcely entered into

actual practice, being mostly confined to those few individuals

who, in such a benighted period, passed for men of science

and learning. The calculator was styled, in correct Latin,

abacista ; but in Italian, abbachista, or abbachiere. The

Arabians, having adopted an improved species of numeration,

to which they gave the barbarous name of algarismus or algo-

rithmus, from their definite article al, and the Greek word for

number, this compound term was adopted by the Christians

of the West, in admiration of their superior skill, to signify

calculation in general, long before the peculiar method of per-

forming it had become known and practiced among them.

The term alyai'isvi was converted in English into augrim
or awgrym, and applied even to the pebbles or counters used

in ordinary calculation. The same word, algorithm, is now

applied by mathematicians to express any peculiar sort of

notation.

The Abacus had been adopted merely as an instrument

for facilitating the process of computation. It became

necessary, however, to adopt some simpler and more conveni-

ent method of expressing numbers. A very ancient practice

consisted in employing the various articulations and disposi-

tions of the fingers and the hands, to denote the numerical

series. On this narrow basis, the Romans framed a system of

considerable extent. By the inflexion of the various fingers

of the left hand, they proceeded as far as toi, and by combin-

ing these with some other given inflexions, as changes in the
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positiou of the thumb, they could advance to a hundred
;
and

using the right hand in a similar manner, they proceeded as

far as a thousand and ten thousand. This is as far as the

system appears to have been carried by the ancients
;
but the

venerable Bede, by referring- these signs to the various parts

of the body, as the head, the throat, the side of the chest, the

stomach, the waist, the thigh, etc., has shown how they could

be again multiplied a hundred times, and raised to the extent

of a million. In this numerical play, the Romans especially

had acquired great dexterity. Many allusions to the practice

are made by their poets and orators, and without some knowl-

edge of the principle adopted, many passages of the classics

would lose their whole force.

A species of digital arithmetic seems to have existed among
nearly all the Ea.stern nations. The Chinese have a system of

indigitation by which they can express on one hand all num-

bers less than 100,000 The thumb nail of the right hand

touches each joint of the little finger, passing first up the

external side, then down the middle, and afterwards up the

other side of it, in order to express the nine digits; the tens

are denoted in the same way on the second finger ;
the hun-

dreds on the third; the thousands on the fourth; the tens of

thousands on the thumb. It would be only necessary to pro-

ceed to the right hand in order to be able to extend this system
of numeration much further than could be required for any

ordinary purposes. The Bengalese count as far as 15 by

touching in succession the joints of the fingers ;
and merchants

in concluding bargains, the particulars of which they wish

to conceal from the by standers, put their hands beneath a

cloth and signify the prices they offer or take by the contact

of the fingers. The same custom is prevalent also in Barbary
and Arabia, where they conceal their hands beneath the folds

of their cloaks, and possess methods which are probably pecu-
liar and national, of conveying the expression of numbers to

each other.
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Juvenal states it as a peculiar felicity of Nestor that lie

counted the years of his age on his right hand. The image of

Janus was represented, according to Pliny, with the fingers

so placed as to represent 365, the number of days in the year.

Some authors, have supposed that Solomon in the passage,

"Len<^th of days is in her right hand, and in her left hand

riches and honor," referred to this practice. The common

phrases, ad digitos redire, in digitos miltere, have the same

meaning as C07nj9wiare, and distinctly refer to digital numera-

tion
;
and the phrase niicare digitis, of frequent occurrence,

alludes to a game extremely popular among the Romans,
and which was probably the same as the ino7-ra of modern

Italy. This noisy game is played by two persons, who stretch

out a number of their fingers at the same moment, and instantly

call out a number; and he is the winner who expresses the

sum of the number of fingers thrown out' The same game
is found amongst the Sicilians, Spaniards, Moors, and Persians,

and under the name taoimoi, is practiced also in China.

Th(!se signs were merely fugitive, and it became necessary

to adopt other marks of a permanent nature for the purpose of

recording numbers. But of all the contrivances adopted with

this view, the rudest undoubtedly is the method of registering

by tallies, introduced into England along with the Court of

Exchequer, as another badge of the Norman Conquest. These

consist of straight, well-seasoned sticks of hazel or willow, so

called from the French verb tailler, to cut, because they are

squared at each end. The sum of money was marked on the

side with notches, by the cutter of tallies, and likewise inscribed

on both sides in Roman characters, by the writer of the tallies.

The smallest notch signified a penny, a larger one a shilling,

and one still larger a pound; but other notches, increasing suc-

cessively in breadth, were made to denote ten, a hundred, and

a thousand. The stick was then cleft through the middle by
the deput3^-chamberlains, with a knife and mallet, the one por-

tion being called a tally, or sometimes the scachia, stipes, or
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kancia, and the other portion named the counter-tally or

folium.
This strange custom might seem the practice of untutored

Indians, and can be compared only to the rude simplicity of

the ancient Romans, who kept their diary by means of lajnlli

or small pebbles, casting a white pebble into the urn on fortu-

nate days, and dropi)iug a black one when matters looked

unprosperous ;
and who sent, at the close of each year, the

Praetor Maximus, with great solemnity, to drive a nail in the

door of the right side of the temple of Jupiter, next to that of

Minerva, the patron of learning and inventor of numbers.

The use of counters was general throughout Europe as late

as the end of the 15th century: about that period they were no

longer used in Italy and Spain, where the early introduction

of the Arabic figures and the number of treatises on the use of

these figures had rendei'ed them unnecessary. Recorde, in his

Ground of Ai-ts, prefaces his second dialogue, entitled
" The

Accounting by Counters," by observing, "Now that you have

learned Arithmetic with the pen, you shall see the same art in

counters, which feat doth not onely serve for them that cannot

write and read, but also for them that can do both, but have

not at the same time their pen or tables with them."

We shall now proceed to give some account of the method

of performing operations by this palpable or

calcular arithmetic. They commenced by ^
drawing seven lines with a piece of chalk, •-

on a table, board, or slate, or by a pen on

paper, as in the margin ;
the counters, which •"

were usually of brass, on the lowest line

represented units, on the next tens, and so

on as far as millions on the uppermost line; ^_
a counter placed between two lines repre-

sented five counters on the line next below •-

it; thus, the number represented in the •

margin is 3629638, and the number of lines -•-

may evidently be increased so as to represent any number.
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To add two numbers, such as tSS and 383, we divide tljtj

lines as in the margin, so as to form three columns, writiuir

the first number in the first —•-

column, numbering from the

-•-©-

-©- -•--

-•-•-

left, the second in the second,
~'

and the result in the third

column. The sum of the

counters on the lowest line -•—o-
in the first two columns is 6; we therefore place one on that

line in the third column, and carry one to the space above

which, added to the one already there, makes one on the second

line
; adding this counter to the six already there, we have

T, and therefore place 2 on the line and carr}^ one to the space
above

; adding the counters on that space, we find there are 3,

hence we leave one in the space and carry one to the next line,'

in which the sum of the counters is six
;
we leave one on the

line and carry one to the space above, and adding to the

counter already there we have two counters, hence we leave

no counter there, but place one on the fourth line; the sum
thus obtained will be lltl.

The principle of this operation is extremel}' simple, and the

process could, with a little practice, be performed with much

rapidity. In practice, the last column would not be used, as

the counters on each line would be removed as the addition

proceeded, and replaced by those which denoted their sum.

We will illustrate the method of subtractiou by taking 682

from 1375. The two count-

ers on the first line have

none to correspond from

which theycan be subtracted ; _^_,
we therefore bring down
the counter from the space

above and replace it by 5 counters on the line
;
we shall the\i

have 3 counters left on the line and none on the space ;

we then bring down 1 counter from the second space, leaving



PALPABLE ARITHMETIC. 157

a remainder of 4 coanters on the line
;
then bring down 1

counter from the third line to the second space, and we have 1

counter left; and so we proceed until the subtraction is com-

plete, and we shall have as a remainder 693. Recorde writes

the smaller number in the first column, and commences sub-

tracting at the upper line.

To illustrate the process of multiplication, let us find the

product of 245T by 43. We express the multiplicand in the

first column and the

multiplier in the

second
; multiply

first by 3, and

place the product
in the third column

and the product by
4 in the fourth;

add the numbers in

tliesetwo columns,

and the sum is the product required.

Division may be illustrated by dividing 12832 by 608.

Since six hundreds is contained in 12 thousands 2 tens times,

we place two

counters on the

second line of the

quotient; multiply-

ing 6 hundreds by
2 tens and subtract-

ing, we have no re-

aiaiuder; multiply-

ing 8 by 2 tens, we
have 16 tens; but since 16 tens equal 1 hundred {tnd 6 tens,

we take oflf 1 from the 3 in the third or hundreds line, leaving
2 remaining; then take off 1 of those 2 and replace it by 2 in

the second space, and then take 1 from the second space and 1

from the second line
;

then transfer the remaining counters
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to the column of the first remainder, and we have as a re-

mainder 672. The operation is repeated, placing the quotient
1 on the lowest line of the quotient column

;
and in this case

we merely subtract the divisor from the first remainder, obtain-

ing 64 for the last remainder, and 21 for the quotient. This

process may evidently be repeated to any extent
;
but in prac-

tice it was much simplified by removing the counters of the

dividend to form the first remainder, and so on until the opera-
tion was complete.

Recorde mentions two different ways of representing sums

of money by means of counters, one of which he calls the

merchant's and the other the auditor's 9
account. In the margin, £198 19s. lid.

is expressed by the first method, the low- •
est line being pence, the second shillings,

the third pounds, and the fourth scores of •

pounds; the spaces represent half a unit

of the next superior line, and the detached •

counters at the left are equivalent to five counters at the right.

Tbe operations of addition, subtraction, etc. would be per-

formed in a manner similar to those already given.

The same sum would be represented by the auditor's

account as in the margin; the first group to the right being

pence, the second shillings,

the next pounds, and the

Icit hnnd group scores

of pounds; the two lower

lines denote units of their respective classes, while in the third

line those on the left denote one quarter and on the right one

half of the next superior class.

The Chinese Computing Table or Swan-Pan, previously

mentioned, is represented by the accompanying engraving.

It consists of a small oblong board surrounded by a frame or

ledge, and parted downwards near the left side by a similar

ledge. It is then divided horizontally by ten smooth and
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slender rods of bamboo, on which are strung two small balls

of ivory or bone in the narrow compart- rv.-,.jv .^

ment, and five such balls in the wider

compartment ;
each of the latter on the

several bars denoting one, and each of the

former expressing five. The progressive

bars, descending after the Chinese manner

of writing, have their values increased ten

fold at each step. The arrangement here

figured denotes, reckoning downwards,
the number 5,804,712,063. The Swan-

Pan advances to the length of ten billions,

or a thousand times further than the

Roman Abacus. But the most admirable feature of the in-

strument is, that by beginning the units at any particular iiar

the decimal subdivisions of the unit may be represeiiird.

The Japanese make use of a similar instrument, and the

facility with which they perform arithmetical operations is

truly surprising.

Several persons of eminence, during our own times, have

advocated the revival of the practice of calculation by means

of counters. Prof. Leslie considers this method as better cal-

culated than any other to give a student a philosophical knowl-

edge of the classification of numbers, and the theory of their

notation
;
and he has given, in great detail, examples of the

representation of numbers in different scales of notation by

counters, and of operations by means of them.

There are other species of Palpable Arithmetic, some of

which have been adapted especially for the use of blind

people: the celebrated Saunderson invented an instrument

for this purpose with which he is said to have worked arith-

metical questions with extraordinary rapidity. Arithmetical

instruments of this kind possess considerable interest and im-

portance from their use in lessening the privations consequent

upon one of the greatest human calamities.
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Among other arithmetical machines for shortening the work

of calculation or relieving the operator from any troublesome

or difficult exercise of the memory, are Napier's virgulse, or

i'ods, which were formerly much celebrated and generally used.

The work in which they were first described was published in

IGIY, under the title of Rahdologia. In the dedication to

Chancellor Seton, he says, that the great object of his life had

been to shorten and simplify the business of calculation; and

the invention of logarithms, which he had just promulgated,
was a noble proof that he had not lived in vain. These virgu-

lse, rodfi, or bones, as they were often called, were thin pieces

of brass, ivory, bone, or any other substance, about two inches

in length and a quarter of an inch in breadth, distributed into

ten sets, generally of five each
;

at the head of each of these,

in succession, was inscribed one of the nine digits or zero, and

underneath them in each piece the products of the digit at the

top with each of the nine digits in succession, in a series of

eight squares divided by diagonals, in the upper part of which

were put the digits in the place of tens, and in the lower the

digits in the place of units. In order to multiply any two num-

bers together, such as 3469 and 574, those rods are to be

placed in contact which are headed by the digits 1, 3, 4, 6, 9,

and the successive products of the terms of the multiplier into

the multiplicand are found by adding successive]}' the digit on

the upper half of the square to the right to that in the lower half

of the square to the left, in the line of squares which are oppo-

site to the figure of the multiplier which is used
; thus, to mul-

tiply 3469 by 4, we take the 13 4 6 9

line of squares opposite 4,

represented in the margin,
and the product is 13876,

being found by writing 6, the sum of 4 and 3, of 6 and 2, etc.,

carrying when necessary. In case of division, those rods are

arranged in contact which are headed by the figures of the

divisor, and we are thus enabled to obtain the products formed

by the divisor and successive terms of the quotient.

4
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Utmost precision. In 1834 he commenced to design a still

more powerful engine, which has not yet been constructed.

The expense of these niachiues is enormous, $80,000 having
been spent on the partial construction of the first. They are

designed for the calculation of tables or series of numbers,
such as tables of logarithms, sines, etc. The machine pre-

pares a stereotype plate of the table as fast as calculated, so

that no errors of the press can occur in publishing the result

of its labors. Many incidental benefits have arisen from

this invention, among which the most curious and valua-

ble was the contrivance of a scheme of mechanical notation by
which the connection of all parts of a machine, and the precise

action of each part, at each instant of time, may be rendered

visible on a diagram, thus enabling the contriver of machinery
to devise modes of economizing space and time by a proper

arrangement of the parts of his own invention.

A machine invented by G. and E. Scheutz, of Stockholm,

and finished in 1853, was purchased for the Dudley Observa-

tory, at Albany. The Swedish government paid $20,000 as a

gratuity towards its construction. The inventors wished to

attain the same ends as Mr. Babbage, but by simpler means.

It can express numbers decimally or sexagesimally, and prints

by the side of the table the corresponding series of numbers

or arguments for which the table is calculated. It has already

calculated a table of the true anomaly of Mars for each J^ of a

day. In size, it is about equal to a boudoir piano. Other

attempts have been made, but so far nothing has been accom-

plished which is entirely satisfactory, though the utility of

some such engine in the calculation of astronomical and other

tables is so great, that it is quite probable that efforts will be

continued until complete success is attained.
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CHAPTER I.

THERE IS REASONING IN ARITHMETIC.

ALL
reasoning is a process of comparison ;

it consists in

comparing one idea or object of thought with another.

Comparison requires a standard, and this standard is the old,

the axiomatic, the known. To these standards we bring the

new, the theoretic, the unknown, and compare them that we

may understand them. The law of correct reasoning, there-

fore, is to compare the new with the old, the theoretic with the

axiomatic, the unknown with the known.

This process, simple as it seems, is the real process of all

reasoning. We pass from idea to truth, and from lower truth

to higher truth, in the endless chain of science, by the simple

process of comparison. Thus the facts and phenomena of the

material world are understood, the laws of nature interpreted,

and the principles of science evolved. Thus we pass from the

old to the new, from the simple to the complex, from the known

to the unknown. Thus we discover the truths and principles

of the world of matter and mind, and construct the various

sciences. Comparison is the science-builder
;

it is the architect

which erects the temples of truth, vast, symmetrical, and beauti-

ful.

In mathematics this process is, perhaps, more clearly exhib-

ited than in any other science. In geometry, the definitions

and axioms are the standards of comparison ; beginning in

these, we trace our way from the simplest primary truth to the

profouudest theorem. In arithmetic we have the same basis,

(165;
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and proceed by the same laws of logical evolution. Defini-

tions, as a description of fundamental ideas, and axioms, as the

statement of intuitive and necessary truths, are the foundation

upon which we rear the superstructure of the science of num-
bers.

These views, though admitted in respect of geometry, have

not always bee'n fully recognized as true of arithmetic. The

science, as presented in the old text-books, was simply a col-

lection of rules for numerical operations. The pupil learned

the rules and followed them, without any idea of the reason

for the operation dictated. There was no thought, no deduc-

tion from principle; the pupil plodded on, like a beast of burden

or an unthinking machine. There was, in fact, as the subject

was presented, no science of arithmetic. We had a science of

geometry, pure, exact, and beautiful, as it came from the hand
of the great masters. Beginning with primary conceptions
and intuitive truths, the pupil could rise step by step from the

simplest axiom to the loftiest theorem
;
but when he turned his

attention to numbers, he found no beautiful relations, no inter-

esting logical processes, nothing but a collection of rules for

adding, subtracting, calculating the cost of groceries, reckoning

interest, etc. Indeed, so universal was this darkness, that the

metaphysicians argued that there could be no reasoning in the

science of numbers, that it is a science of intuition
;
and the

poor pupil, not possessing the requisite intuitive power, was

obliged to plod along in doubt, darkness, and disgust.

Thus things continued until the light of popular education

began to spread over the land. Men of thought and genius

began to teach the elements of arithmetic to young pupils ;

and the necessity of presenting the processes so that children

could see the reason for them, began to work a change in the

science of numbers. Then came the method of arithmetical

analysis, in that little gem of a book by Warren Colburn. It

touched the subject as with the wand of an enchantress, and

it began to glow with interest and beauty. What before
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was dull routine, now became animated with the spirit of

logic, and arithmetic was enabled to take its place beside its

sister branch, geometry, in dignity as a science, and value as

an educational agency.

Before entering into an explanation of the character of arith-

metical reasoning, it may be interesting to notice the views of

some metaphysicians who have touched upon this subject. It

has been maintained, as already indicated, by some eminent

logicians, that there is no reasoning in arithmetic. Mansel

says,
" There is no demonstration in pure arithmetic," and the

same idea is held by quite a large number of metaphysicians.

This opinion is drawn from a very superficial view of the sub-

ject of arithmetic,—a not uncommon fault of the metaphysician

when he attempts to write upon mathematical science. The

course of reasoning which led to this conclusion, is probably

as follows :

First, addition and subtraction were considered the two fun-

damental processes of arithmetic
;

all other processes were

regarded as the outgrowth of these, and as contained in them.

Second, there is no reasoning in addition
;
that the sum of 2

and 3 is 5, says Whewell, is seen by intuition
;
hence subtrac-

tion, which is the reverse of addition, is pure intuition also;

and therefore the whole science, which is contained in these

two processes, is also intuitive, and involves no reasoning.

This inference seems plausible, and by the metaphysicians and

many others has been considered conclusive.

That this conclusion is not only incorrect but absurd, may
be seen by a reference to the more difficult processes of the

science. Surely, no one can maintain that there is no reason-

ing in the processes of greatest common divisor, least common

multiple, reduction and division of fractions, ratio and pro-

portion, etc. If these are intuitive with the logicians, it is

very certain that they require a great deal of thinking on the

part of the learner. These considerations are sufficient to dis-

prove their conclusions, but do not answer their arguments; it
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becomes necessary, therefore, to examine the matter a little

more closely.

Whether the uniting of two small numbers, as three and two,

involves a process of reasoning, is a point upon which it is

admitted there may be some difference of opinion. The differ-

ence of two numbers, however, may be obtained by an infer-

ence from the results of addition, and, as such, involves a

process of reasoning. The elementary products of the multi-

plication table are not intuitive truths : they are, as will be

shown in the next article, derived, as a logical inference, from

the elementary sums of addition. The same is also true in the

case of the elementary quotients in division. Even admitting,

then, that there is no reasoning in addition or subtraction, it

can clearly be shown that the derivation of the elementary
results in multiplication and division does require a process of

reasoning. Passing from small numbers, which may be

treated independently of any notation, to large numbers ex-

pressed by the Arabic system, we see that we are required to

reduce from one form to another, as from units to tens, etc.,

which can be done only by a comparison, and also that the

methods are based upon, and derived from such general princi-

ples, as " the sum of two numbers is equal to the sum of all

their parts," etc.

The great mistake, however, in their reasoning, is in assum-

ing that all arithmetic is included in addition and subtraction.

If it could be proved that addition and subtraction, and the

processes growing immediately out of them, contain no rea-

soning, a large portion of the science remains which does not

find its root in these primary processes. Several divisions of

arithmetic have their origin in and grow out of comparison,

and not out of addition or subtraction; and since comparison
is reasoning, the divisions of arithmetic growing out of it, it

is natural to suppose, involve reasoning processes. Ratio, the

comparison of numbers
; proportion, the comparison of ratios

;

the progressions, etc., certainly present pretty good examples



THERE IS REASONING IN ARITHMETIC. 169

of reasoning. These belong to the department of pure arith-

metic. A proportion is essentially numerical, as is shown

in another place, and belongs to arithmetic rather than to

geometry. If, in geometry, the treatment of a proportion

involves a reasoning process, as the logicians will surely

admit, it must certainly do so when presented in arithmetic,

where it really belongs. It must, therefore, be admitted that

there is reasoning in pure arithmetic.

Again, if there is no reasoning in arithmetic there is no

science, for science is the product of reasoning. If we admit

that there is a science of numbers, there must be some reason

ing in the science. And again, arithmetic and geometry are

regarded as the two great co-ordinate branches of mathematics.

Now it is admitted that there is reasoning in geometry, the

science of extension
;
would it not be absurd, therefore, to sup-

pose that there is no reasoning in aritbmetic, the science of

numbers ?

Mansel, as already quoted, says :

" Pure arithmetic contains

no demonstrations." If by this he means—and I presume he

does—that pure arithmetic contains no reasoning, he is

answered by the previous discussion. If, however, ne means

that arithmetic cannot be developed in the demonstrative form

of geometry—that is, by definition, axiom, proposition, and

demonstration—he is also in. error. Though arithmetic has

never been developed in this way, it can be thus developed.
The science of number will admit of as rigid and systematic a

treatment as the science of extension. Some parts of the sci-

ence are even now presented thus; the principles of ratio,

proportion, etc., are examples. I propose, at some future time,

to give a complete development of the subject, after the manner

of geometry. The science, thus presented, would be a valua-

ble addition to our academic or collegiate course, as a review

of the principles of numbers. Assuming, then, that there is

reasoning in arithmetic, in the next chapter I shall consider

the nature of reasoning, as employed in the fundamental opera-

tions of arithmetic.
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NATURE OF ARITHMETICAL • REASONING.

IN
order to show the nature of the reasoning of arithmetic,

a brief statement of the general nature of reasoning will be

presented. All forms of reasoning deal with the two kinds of

mental products, ideas and truths. An idea is a simple notion

which may be expressed in one or more words, not forming a

proposition;
— as, 6ircZ, triangle, four, etc. A ti-uth is the

comparison of two or more ideas which, expressed in language,

give a proposition ; as, a bird is an animal, a triangle is a

polygon, four is an even number. The comparison of two

ideas directly with each other, is called a, judgment ; as, a

bird is an animal, or five is a prime number. Here j^oe is one

idea, and a prime number is another idea. Judgments give
rise to propositions; a proposition is a judgment expressed in

words.

Nature of Reasoning.— If we compare two ideas, not

directly, but through their relation to a third, the process is

called reasoning. Thus, if we compare A and B, or B and C,

and say A equals B or B equals C, these propositions are

judgments. But if, knowing that A equals B, and B equals

C, we infer that A equals C, the process is reasoning. Rea-

soning may, therefore, be defined as the p)rocess of comparing
two ideas through their relation to a third. Judgment is a

process of direct or immediate comparison; reasoning is a pro-

cess of indirect or mediate comparison.

(170)
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In thus comparing two ideas through their relation to a

third, it is seen that we derive one judgment from two other

judgments; hence we may also define reasoning as the pro-
cetss of deriving one judgment from two other judgments;
or as the process of deriving an unknown truth from two

known truths. The two known truths are called premises, and

the derived truth the conclusion; and the three propositions

together constitute a syllogism. The syllogism is the simplest
form in which a process of reasoning can be stated. Its usual

form is as follows: A equals B ;
but B equals C

;
therefore A

equals C. Here "A equals B" and "B equals C" are the pre-

mises, and "A equals C" is the conclusion.

The premises in reasoning are known either by intuition, by
immediate judgment, or by a previous course of reasoning.
In the syllogism—"All men are mortal

;
Socrates is a man

;

therefore, Socrates is mortal"—the first premise is derived by
induction, and the second by judgment. In the syllogism—
" The radii of a circle are equal ;

R and R' are radii of a cir-

cle
;
therefore R and R' are equal

"—the first premise is an intu-

ition, and the second is a judgment. In the syllogism—"A

equals B, and B equals C
;
therefore A equals C"—both pre-

mises are judgments.
It should also be remarked that truths drawn from the first

steps of the reasoning process, do themselves become the

basis of other truths, and these again the basis of others, and
so on until the science is complete. This method of reasoning
is called Discursive (discursus) ; it passes from one truth to

another, like a moving from place to place. We start with the

simple truths which are so evident that we cannot help seeing
them

;
and travel from truth to truth in the pathway of science,

until we reach the loftiest conceptions and the profoundest

principles.

Reasoning, as we have stated, is the comparison of two
ideas through their relation to a third; or it may be defined as

the derivation of one judgment from two other judgments.
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These two judgments are not always both expressed ; indeed,

in the usual form of thought, one is usually suppressed ;
but

both are implied, and may be supplied if desired to show

the validity of the conclusion. Every truth derived by a pro-

cess of reasoning, may be shown to be an inference from two

propositions which are the premises or ground of inference,

and this is the test of the validity of the truth derived.

There are two kinds of reasoning, inductive and deductive.

Inductive reasoning is the process of deriving a general truth

from several particular ones. It is based upon the principle

that what is true of the many is true of the whole. Thus, if

we see that heat expands many metals, we infer, by induction,

that it will expand all metals. Deduction is the process of

deriving a particular truth from a general one. It is based

upon the axiom, that what is true of the whole is true of all

the parts. Thus, if we know that heat will expand all metals,

we infer, by deduction, that it will expand any particular

metal, as iron.

Mathematics is developed by the process of deductive rea-

soning. The science of geometry begins with the presentation

of its ideas, as stated in its definitions, and its self-evident

truths, as stated in its axioms. From these it passes by the

process of deduction to other truths; and then, by means of

these in connection with the primary truths, proceeds to still

other truths; and thus the science is unfolded. In arithmetic,

no such formal presentation of definitions and axioms is made,
and the truths are not presented in the logical form, as in

geometry. From this it has been supposed that there is no

reasoning in arithmetic. This inference, however, is incorrect;

the science of numbers will admit of the same logical treat-

ment as the science of space. There are fundamental ideas

in arithmetic as in geometry ;
and there are also fundamental,

self-evident truths, from which we may proceed by reasoning
to other truths. In this chapter T shall endeavor to show the

nature of the reasoning in the Fundamental Operations of

Arithmetic.
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Arithmetical Ideas.—The fundamental ideas of arithmetic,

as given in the process of counting, are the successive

numbers one, two, three, etc. These ideas correspond to the

different ideas of geometry, and the definitions of them will

correspond to the definitions of geometry. In geometry, we
have the three dimensions of extension, giving us three distinct

classes of ideas, liiies, surfaces, and volumes; in arithmetic

there is only one fundamental idea of succession, giving us

but one fundamental class of notions. The primary ideas of

arithmetic are one, two, thr^ee, four, Jive, etc., vrhich correspond
to the idea of line, angle, triangle, quadrilateral, pentagon,

etc., in geometry. These ideas may be defined as in the cor-

responding cases in geometry. Thus two may be defined as

one and one; three as two and one, etc.; or, in the logical form
—three is a number consisting of two units and one unit.

There are other ideas of the science growing out of relations,

such as factor, common divisor, common multiple, etc.

Arithmetical Axioms.—The axioms of arithmetic are the

self-evident truths that relate to numbers. There are two
classes of axioms in arithmetic as in geometry,—those which

relate to quantity in general, that is, to numbers and space; and

those which belong especially to number. Thus,
"
Things

that are equal to the same thing are equal to each other," and
" If equals be added to equals the sums will be equal," etc.,

belong to both arithmetic and geometry. In geometry we
have some axioms which do not apply to numbers, as "All

right angles are equal," "A straight line is the shortest dis-

tance from one point to another," etc. There are also axioms

which are peculiar to arithmetic, and which have no place in

geometry. Thus, "A factor of a number is a factor of a mul-

tiple of that number," "A multiple of a number contains all

the factors of that number," etc. These two classes of axioms

are the foundation of the reasoning of arithmetic, as they are

of the science of geometry.
Arithmetical Reasoning.— The reasoning of arithmetic is
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deductive. The basis of our reasoning is the definitions and

axioms; that is, the conceptions of arithmetic, and the self-

evident truths arising from such conceptions. The definitions

present to us the special forms of quantity upon which we
reason

;
the axioms present the laws which guide us in the

reasoning process. The definitions give the subject-matter of

reasoning; the axioms give the principles which determine the

form of reasoning, and enable us to go forward in the discovery
of new truths. Thus, having defined an angle, and a right

angle, we can by comparison, prove that "the sum of the

angles formed by one straight line meeting another, is equal to

two right angles." Having the definition of a triangle, by

comparison we can determine its properties, and the relation

of its parts to each other. So in arithmetic, having defined

any two numbers, as four and nix, we can determine their

relation and properties ;
or having defined least common mul-

tiple, we can obtain the least common multiple of two or more

numbers, guiding our operations by the self-evident and neces-

sary principles pertaining to the subject.

Axioms in Reaaonivg.—In this explanation of reasoning,
it is stated that reasoning is a process of comparing two ideas

through their relations to a third, and that axioms are the laws

which guide us in comparing. This view of the nature of

axioms differs from the one frequently presented. Some logi-

cians tell us that axioms are general truths which contain par-
ticular truths, and that reasoning is the process of evolving
these particular truths from the genei'al ones. The axioms of

a science are thus regarded as containing the entire science;

if one knows the axioms of geometry, he knows the general
truths in which are wrapped up all the particular truths of the

science. All that is necessary for him to become a profound

geometer is to analyze these axioms and take out what is con-

tained in them.

The incorrectness, or at least inadequacy of this view of

the nature of axioms and their use in reasoning, I cannot now
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Stop to consider. Its fallacy is manifest in the extent of the

assumption. It may be very pleasant for one to suppose that

when he has acquired the self-evident truths of a science, he

has potentially, if not actually, in his mind the entire science;

such an expression may do as a figure of speech, but does not,

it seems to me, express a scientific truth A general formula

may be truly said to contain many special truths which may
be derived from it; thus Lagrange's formula of Mechanics

embraces the entire doctrine of the science; but no axiom can

De, in the same sense, said to contain the science of arithmetic

or geometry.
But whatever may be' thought of this view of the nature

and use of axioms, it cannot be denied that the explanation of

reasoning which I have given is correct. Reasoning is the

comparison of two ideas through their relation to a third, the

comparison being regulated by self-evident truths. This is the

view of Sir William Hamilton, and it has been adopted by sev-

eral modern writers on logic. Even if the other view is right
—that the axioms may be regarded as general truths, from

which the particular ones are evolved by reasoning—their

practical use in reasoning coincides with the explanation of the

nature of the reasoning powers which I have presented ;
and this

idea of the subject will be found to be much more readily under-

stood and applied. The simpler view is that the axioms ar^e

laws which guide us in the comjjarison, or they are the laws

of inference. Thus, if I wish to compare A and B: seeing
that they are each equal to C, I can compare them with each

other, and determine their equality by the law that things
which are equal to the same thing are equal to each other.

So, if I have two equal quantities, I may increase them equally
without changing their relation, according to the faw enun-

ciated in the axiom that if the same quantities he added to

equals, the results will he equal. This view of the subject of

axioms and of their use in the process of reasoning, may be

supported by various considerations, and will be found to
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throw light upon several things in logic upon which writers

are sometimes not quite clear. In the following chapter I shall

apply this view of reasoning to the fundamental operation? of

arithmetic.



CHAPTER III.

REASONING IN THE FUNDAMENTAL OPERATIONS.

SCIENCE,
as already stated, consists of ideas and truths.

Truths are derived either by intuition or reasoning. Intu-

itive truths come either by the intuitions of the Sense or

the Reason; derivative truths by the discursive process of

induction or deduction. The primary ideas of arithmetic are

the individual numbers, one, two, three; its primary ^rwi/is are

the elementary sums and differences of addition and subtrac-

tion. How these primary truths are derived, is a question

upon which opinion is divided. On the one hand it is claimed

that they are intuitive
;
on the other, that they are derived by rea-

soning. Thus, txoo and one are three, three and two are five, etc.,

are regarded by some as pure axioms, neither requiring nor

admitting of a demonstration; while others regard them as

deductions from the primary process of counting. Let us ex-

amine the subject somewhat in detail, and also consider the

process of deriving other truths growing out of these.

Addition.—It is generally assumed that the primary sums

of the addition tables' are axioms. They are intuitive truths

growing out of an analysis of our conceptions of a number into

its parts, or a synthesis of these parts to form the number.

Thus, given the conception of nine, by analysis we see that it

consists or is composed o^four and^iue; or given/o«r d^ndi five,

by synthesis we immediately see that it gives a combination of

nine units, or is equal to nine. This view is maintained by some

eminent logicians.
" Why is it," says Whewell,

" that three

12 (177)
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and two are equal to four and one? Because if we look at

Hve things of any kind we see that it is so. The five are four

and one
; they ai'e also three and two. The truth of our asser-

tion is involved in our being able to conceive the number five

at all. We perceive this truth by intuition, for we cannot see,

or imagine we see, five things, without perceiving also that the

assertion above stated is true."

The other view makes counting the fundamental process,

and derives the judgments expressed in the elementary sums

by inference. Thus, the process of finding the sura o^ five

and four may be stated as follows :

Tlie sum of^ueand/our-is that number which is four units after five;

By counting we find that the number four units after five is nine;

Hence, the sum of five and /owr is nine.

This is a valid syllogism, and shows that the sums might be

thus obtained, whether they are actually so obtained or not.

It may be objected, however, that they can be obtained only
in one way ;

and if intuitive, then it is not possible to derive

them by any process of reasoning. This does not necessarily

follow, for we can often obtain, by a process of reasoning, a

truth which we could also derive in some other way. If we
discover a new metal, it can be immediately inferred that heat

will expand it, since heat expands all metals, which is a pro-

cess of deductive reasoning. This truth may also be obtained

by direct experiment. Many examples may be given to show

that a truth may be derived by reasoning, which might also

be derived in some other way.
These fundamental truths may be used in obtaining the rela-

tions of different combinations of numbers, and such an

operation will be a process of reasoning. Thus, it is not evi-

dent to the learner, neither is it intuitive with any one, that 7

plus 2 equals 4 plus 5
; or, what is less readily seen, that 25

plus 37 equals 19 plus 4.S. These are not axioms, since they

cannot be seen to be true without an examination of the

grounds of tho relation. The process of reasoning to prove
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the propositions is as follows: T plus 2 equals 9; but 4 plus 5

equals 9
; therefore, 7 plus 2 equals 4 plus 5

; or, as Whcwell

puts it, thus : t equals 4 and 3, therefore 7 and 2 equals 4 and

8 and 2; and because 3 and 2 are 5, 7 and 2 equals 4 and 5.

In the former case the result depends on the axiom,
"
Things

that are equal to the same thing are equal to each other ;" in

the latter case, the reasoning process is based upon the axiom,

"When equals are added to equals the results are equal." It

will be noticed that Whewell's method of proof is very similar

to the ordinary demonstration of the theorem that "When one

straight line meets another straight line, the sum of the two

angles equals two right angles."

That this is a valid process of reasoning is evident from its

similarity to the geometrical process—A plus B equals C
;
but

D plus E equals C
; therefore, A plus B equals D plus E. It

is readily seen that many such' cases will arise in which the

operations are entirely independent of the notation employed,
from which it cannot be doubted that there is reasoning in

addition in pure arithmetic. When we proceed to the addition

of large numbers, expressed by the Arabic system, which may
not be regarded as pure arithmetic, we base the operation upon
the axiom that the sum of several numbers is equal to the sum

of all the parts of those numbers. That the derivation of a

result from this general axiomatic principle is a process of rea-

soning, cannot be doubted by any one who is competent to

understand in what reasoning consists.

Subtraction.—Subtraction, like addition, embraces two cases,

the finding of the difference between numbers independently of

the notation employed to express them,—that is, the elementary
differences of the subtraction table,—and the finding of the dif-

ference between large numbers expressed in the Arabic system.

The elementary differences in subtraction may be obtained

in two ways. First, we may find the difference between two

numbers by counting off from the larger number as many units

as are contained in the smaller number. Thus, if we wish to
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subtract /owr from nine, we may begin at nine and count back-

ward four units, and find we reach Jive, and thus see that

four from nine leaves fve. The other method consists in

deriving the elementary differences by inference from the ele-

mentary sums. The former method is regarded by some as

intuitive, although it admits of a syllogistic statement; the

latter method, without doubt, involves a process of reasoning.

To illustrate, suppose we wish to find the difference between

nine and^/iue. The ordinary process of thought is as follows:

Since four added to^ife equals 7iine, nine diminished hj five

equals four. This process, put in the formal manner of the

syllogism, is as follows:

The difference between two numbers is a number which added to

the le&s will equal the greater ;

But /our added to Jive, the less, equals nine, the greater;

Therefore, /or(r is xhe diflerence.between nine and five.

This, of course, is too formal for ordinary language, but is

all implied in the practical form, "fve from nine leaves four,
since j^re and four are nine.'''' In subtracting large numbers

expressed by the Arabic system of notation, we proceed upon
the principle that the difference between the parts of numbers

equals the difference between the numbers themselves, which

shows that the process is one of deduction.

Multiplication.
—Multiplication, like addition and subtrac-

tion, embraces two cases—the finding of the elementary pro-

ducts of the multiplication table, and the use of these in

ascertaining the product of two numbers expressed by the

Arabic system. The elementary products are obtained by
deduction from the elementary sums of addition. Thus, in

obtaining the product of three times four, the logical form of

thought is as follows:

Three times /our are the sum oi three fours ;

But the sum of three fours is twelve;

Hence, three times four are twelve.

The first premise is an immediate inference from the defini-
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tion of multiplication ;
the second premise we know to be true

from addition
;
the conclusion is a deductive inference from the

two premises. In the common form of thought we omit one

of the premises, saying, "three times four are twelve, since

the sum of three fours is twelve." The multiplication of large

numbers depends on these elementary products thus derived

by deduction, and also employs the principle, that the sum of

the products of the parts equals the whole product.

Division.—The reasoning in division is similar to that in

multiplication. The elementary quotients of the division table

may be obtained in two distinct ways—by auhtraction or

reverse multiplication, but in either case they are an inference

from things already know?^, and are thus derived by a process

of reasoning. By the method of subtraction we say, "four is

contained in twelve three times, since four can be subtracted

from twelve three times
; by the method of reverse multiplica-

tion we say, "four is contained in twelve three times, since

three times four are twelve^ Each of these may be expressed

in the form of a syllogism, as in multiplication. The division

of larger numbers is based on these elementary quotients, and

also upon the principle that the sum of the partial quotients

equals the entire quotient.

The view here given concerning the origin of the elementary

products and quotients may be presented in another way.

When we begin addition we have no idea of multiplication ;

by and by the idea of a product arises i"n the mind, and it is

immediately seen that the product of the number is the sum

arising fy^om taking one number as many times as there are

units in another. Suppose then we wish to know the prodm^'t

of 3 times 4, we reason as follows:

The product of 3 times 4 equals the sum of 4 taken 3 times
;

But the sum of 4 taken 3 times we find is 12
;

Hence, the product of 3 times 4 equals 12.

Primary quotients may be obtained in a similar manner, and

both are valid forms of reasoning. But whatever view may
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be taken of the origin of the elementary truths of the funda-

mental operations—and the fact of a difference of opinion indi-

cates a reason for it—it certainly cannot be denied, by one who
will examine, that there is reasoning in the processes growing
out of these fundamental operations, and also in those which

have their origin in comparison. These fundamental judgments
of the tables of the four "ground rules" are committed to

memory, and are employed in the reasoning processes by which

we derive other truths in the science.

Other Forms.—As we leave the fundamental operations,

however, the processes of reasoning grow more and more dis-

tinct. As each new idea is presented, new truths arise intui-

tively, which become the basis for the derivation of other

truths, the same as in geometry. To illustrate, take the sub-

ject of Greatest Common Divisor. As soon as the idea of a

common divisor is clearly apprehended, several truths are per-

ceived as growing immediately out of this conception. These

truths are intuitively apprehended, and are the axioms pertain-

ing to the subject. From these self-evident truths, we proceed
to other truths by a process of reasoning usually called demon-
stration. Thus, in the subject of greatest common divisor we
have these axioms:

1 . A divisor of a number is a divisor of any number of times that num-
ber.

2. A common divisor of several numbers is the product of some of the

common factors of these numbers.

3. Til e greatest common dirisor of several numbers is the product of all

the common prime factors of these numbers.

4. The greatest common divisor of several numbers contains no factors
but those which are common to all the numbers.

These truths are self-evident and necessary, and are seen

to be so as soon as a clear idea of the subject is attained.

They may be illustrated, but cannot be demonstrated. They
boar precisely the same relation to the arithmetical concep-
tion of greatest common divisor that the axioms of geometry
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do to some of the geometrical conceptions. Thus, in geometry,

as soon as we have the conception of a circle, it is intuitively

seen that all the radii are equal to each other ; or that the

radius is equal to one-half of the diameter, etc. Such truths

are made the basis of the reasoning by which we derive the

other truths relating to the circle. If the process of obtaining

these derivative truths in geometry is regarded as reasoning,

surely the similar processes in arithmetic are also reasoning.

Having a clear conception of the idea of greatest common

divisor, and of the self-evident truths or axioms, belonging to

it, we are prepared to derive other truths relating to the sub-

ject, by the process of reasoning. As an example of a truth

derived by demonstration, take the following: The greatest

common divisor of tico quantities is a divisor of their sum

and their difference.

In order to demonstrate this theorem, take any two numbers,

as 20 and 12. We see that the greatest common divisor is 4.

We also know that 20 is 5 times 4 and 12 is 3 times 4. We
then reason as follows :

The Slim of the two numbers equals 5 times 4 plus 3 times 4 or 8

times 4;

But 4, the G. C. D., is evidently a divisor of 8 times 4
;

Hence, 4, the G. C. D., is a divisor of the sum of the two numbers.

In this syllogism "8 times 4" is the middle term, the " sum

of the two numbers" the major term, and "'

4, the greatest

common divisor," the minor term ; and the syllogism is entirely

valid. In a similar manner we may prove that the greatest

common divisor is a divisor of the difference of the two num-

bers. The method of reasoning with 20 and 12 is seen to be

applicable to any two numbers having a common divisor
;

hence the truth is general

It should be remarked that a large portion of the reasoning

in arithmetic consists in changing the form of a quantity, so

that we may see a property which was concealed in a previous

form, and then inferring that it belongs also to the quantity in
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its first form, since the value of the quantity is not changed by

changing its form.

It is thus seen that the science of arithmetic, like geometry,

consists of ideas and truths; that some of these truths are

self-evident, and others are derived by a process of reasoning ;

and that the process of reasoning in the two sciences is simi-

lar. We proceed now to consider some of these forms of rea-

soning, and especially the subject of arithmetical analysis,

which will be treated in the next chapter.



CHAPTER IV.

ARITHMETICAL ANALYSIS. •

ARITHMETICAL
Analysis is the process of developing

the relation and properties of numbers by a comparison
of them through their relation to the unit. All numbers con-

sist of an aggregation of units, or are so many times the single

thing ;
and hence bear a definite relation to the unit. This

relation the mind immediately apprehends in the conception of

a number itself. Prom this evident relation to the unit, all

numbers may be readily compared with each other, and their

properties and relations discovered. Let us examine the pro-

cess a little more in detail.

Unit the Basis.—The basis of this analysis is the Unit. The

Unit is the primary and fundamental idea of arithmetic. It is

the basis of all numbers, a number being a repetition of the

Unit, or a collection of units of the same kind. The relation of a

number to the Unit, or of the Unit to a number, is consequently

immediately seen from the conception of a number itself. The
collection is intuitively conceived to be so many times the

Unit, or the Unit such a part of the collection. The import-
ance of the Unit, as the base of the comparison of numbers,
is thus apparent. Integers may be readily compared with each

other, through their relation to the fundamental elements out

of which they are formed.

A Unit is one of the several things considered
; and, since a

fraction is a number of equal parts of a Unit, it is seen thav.

we have a second class of units which we may caW fractional

(185)
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units. These two classes of units may be distinguished as the

Unit and the fractional unit. A number of fractional unitg

gives rise to a class of numbers called fractions. The same

principle of comparison obtains in the comparison of these as

in the comparison of integral numbers. A fractional unit

being one of several equal parts of the Unit, its relation to the

latter is simple and immediately apprehended. We can thus

compare different /rac^?o??aZ unitslij their relation to the Unit,

as vire did integral numbers by their relation to it. The com-

parison of fractions, which at first .might have seemed difficult,

thus becomes simple and easy.
From this consideration we are enabled to see the import-

ance of the IJnit in the process of arithmetical analysis. As
the basis of numbers, it becomes the basis of reasoning with

numbers. We compare number with number or fraction with

fraction by their intermediate relation to the Unit. The. Unit

thus becomes the stepping-stone of the reasoning process, the

central point around which the circle of logic revolves.

Comparison of Integers.—Numbers are compared, as has

already been remarked, by their relation to the Unit. In the

comparison of numbers, the relation between them is not imme-

diately apprehended; but knowing the relation that each sustains

to the Unit, we can ascertain their relation to each other by
this simple intermediate relation. To illustrate this, suppose we
wish to compare any two numbers, as 3 and 5

;
let the problem

be " What is the relation of 3 to 5 ?" or "3 is what part of 5?"

We would reason thus : One is 1 fifth of 5, and if one is 1 fifth

of 5, 3, which is three times one, is three times 1 fifth, or 3

fifths of 5. Hence, 3 is 3 fifths of 5. In this example we cannot

compare 3 directly with 5; we therefore make the comparison

indirectly, by considering their intermediate relation to the

Unit, which is readily apprehended. Again, take the problem,
"If 3 times a number is 12, what is 5 times the number?"

Here, it may be remarked, 3 times the number is the known

quantity, and 5 times the number is the unknown quantity,
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which we wish to find by comparing it with the known quan-

tity. How shall we make this comparison, and thus pass

from the known to the unknown? We cannot compare them

directly, since the relation between them is not readily per-

ceived
;
we must compare them' indirecily by means of their

relation to the Unit. The process of reasoning is as follows:

If 3 times a number is 12, once the number is ^ of 12 or 4;

and if 07ice a number is 4, five times the number is 5 times 4,

or 20. Thus we readily pass from three times the number to

five times the number—from the known to the unknown—first

passing from three to one and then from oie to five. In the

same manner all numbers may be compared with each other,

their relation being determined by this intermediate relation to

One, the Unit, the basis of all numbers.

Comparison of Fractions.—Fractions are also compared by
means of their relation to the Unit. A Fraction is a number

of fractional unit.^. The fractional unit is one of several

equal parts of the Unit; hence the relation between it and the

Unit is simple and readily perceived. When we have a num-

ber of fractional units—that is, a Fraction—in comparing it

with the Unit, we must first pass from the number of fractional

units to the fractional unit itself, and then from the fractional

unit to the Unit. From this we can readily pass to a num-

ber, or to any other fractional unit, and then to any number

of such fraclional units, that is, to any fraction. This will be

more clearly seen by its application to a problem.

Take the problem,
" If | of a number is 24, what is f of the

number?" We reason thus: If iiyo-thirds of a number is 24,

one-third of the number is i of 24, or 12
;
and three-thirds, or

once the number, is 3 times 12, or 3fi. If once the number is

36, one-fourth of the number is
-\

of 36, or 9; and if/iree-fourths

of the number is 3 times 9, or 21. In this problem we compare

the two fractions | and f, by passing from ^u-o-thirds down to

one-third, then rising up to the Unit, then passing down to one-

fourth, and then up to three-fomihs. In other words, we pass
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from a number of fractional units to the fractional unit, then

to the Unit, then to another fractional unit, and then to a

number of those fractional units. We first go down, then up,

uben down again, and then up again to the required point.

Another excellent example of this method of comparison is

given in the solution of the following problem: What is the

relation of ^ to |? Here
-f

is the basis of comparison with

which it is required to compare |. This relation cannot be

immediately seen, but it can •

readily be determined by the

method of analysis. The solution is as follows: One-fifth is \
of f, and if one-Mih. is \ of

|, _/ife-fifths, or One, is 5 times \
or I of

|. If One is | of f, one-third is | of f or ^^ of 4, and

^wo-thirds is 2 times 3^, or !; hence | is f of
|. In this prob-

lem we see the same law of comparison, and this law runs

through the entire subject.

Having given this general idea of the process, I will state

the several simple cases of arithmetical analysis, and illustrate

the process of thought by means of a diagram. The central

relation of the Unit to the thought process, and the transition

from the Unit and to the Unit, will be readily seen.

Case I.— To pass from the Unit to

any number. Take the problem : If 1

apple costs 3 cents, what will 4 apples
cost? If 1 apple costs 3 cents, 4 apples,

which are 4 times 1 apple, will cost 4 times

3 cents, or 12 cents. In this problem the

mind starts at the Unit A, and ascends 4

steps to B.

Case II.— To pass from any number to

the Unit. Take the problem : If 4 apples
cost 12 cents, what will 1 apple cost? The
solution is as follows: If 4 apples cost 12

cents, 1 apple, which is 1 fourth of 4 apples,
will cost 1 fourth of 12 cents, or 3 cents.

In this problem the mind starts at the num-
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ber 4, four steps above the basis, and steps down to the Unit,

or basis of numbers.

Case III.— To pass from a number to a number. Take the

problem: If 3 apples cost 15 cents, what will 4 apples cost?

The solution is : If 3 apples cost 15 cents, 1 apple will cost

i of 15 cents, or 5 cents, and 4 apples will cost 4 times 5 cents,

or 20 cents. In this case we are to pass from the collection

three to i\iQ collection four. In comparing three and four,

their relation is not readily seen
;
but knowing the relation of

three to the Unit, and of the Unit to four, we make the transi-

tion from three to four by passing through the Unit. This

may be illustrated as follows: Suppose one standing at A and

wishing to pass over to C.

Unable to step -directly from

A to C, he first steps down to

the starting point, B, and then

ascends to C. So in compar

ing numbers, when we cannot

pass directly from the one to Unit.

the other, we go down to the

Unit, or starting-point of numbers, and then go up to the other

number. These relations are intuitively apprehended, being

presented in the formation of numbers. In the given problem

we stand three steps above the Unit, and we wish to go four

steps above the Unit. To do this we first descend the three

steps, and then ascend the four steps.

Case IY.— To pass from a unit to a fraction. Take the

problem : If one ton of hay cost $8, what will f of a ton cost ?

The solution is as follows: If one ton of hay costs $8, one-fourth

of a ton will cost \ of $8, or $2, and thi'ee-fourths of a ton

will cost 8 times $2, or $6.

In this problem we pass from the Unit to the fourth, one of

the equal divisions of the unit, and then to a collection of such

equal divisions. In other words, we descend from the integral

A
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A
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one-fourth to the TJnit, then from the Unit to one-fifth, and

then to four-fifths. In other words, we first go down from

the collection of fractional units to the fractional Unit and then

up to the integral Unit ; we then descend to the other frac-

tional unit, and then ascend to the number offractional units

required. It is as if we were standing- at A and wished to

pass to E
;
we cannot step directly, over from one point to the

c—
I

E

r

r
i

D

wn to B, then four
land then four steps

other so we pass froi

steps up to C, then five^

up to E.

These diagrams, it is believ^^s^Dresgj^a clear illustration of

the subject, and enable one to understand the process of thought

in the elementary operations of arithmetical analysis. The

Unit is thus seen to lie at the basis of the process, the mind

running to it and from it in the comparison of numbers. It

will be remembered, however, that these are merely illustra-

tions, and are not designed to convey a complete idea of the

process in all of its details. This can only be seen by a care-

ful analysis of the process itself.

Analysis Syllogistic.
—The process of arithmetical analysis

is a process of mediate comparison, and is consequently a

reasoning process. This will appear from the fact that it may
be presented in the syllogistic form. Take the simplest case:

If 4 apples cost 12 cents, what will 5 apples cost? Expressed

in the form of a syllogism, we have the following:

The cost of 1 apple is I of the cost of 4 apples;

But ^ of the cost of 4 apples is \ of 12 cents, or 3 cents
;

Hence the cost of 1 apple is 3 cents.
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The cost oi five apples is 5 times the cost of 1 apple;

But, 5 times the cost of 1 apple is 5 times 3 cents, or 15 cents;
Hence, the cost of five apples is 15 cents.

It is tbtis seen that the process of analysis is purely syllo-

gistic, and is, consequently, a reasoning process. It is not

usually presented in the syllogistic form, since it would be too

stiff and formal, and moreover would be more difficult for the

young pupil to understand.

Direct Comparison.—The comparison of numbers, so far as

explained, is indirect and mediate, that is, through their relation

to the Unit. After becoming familiar with this process, the

mind begins to perceive the relations between numbers them-

selves, and is thus enabled to reason by comparing the numbers

directly, instead of employing their intermediate relations to

the common basis. To illustrate, take the problem : If 3

apples cost 10 cents, what will 6 apples cost? We may reason

thus: If 3 apples cost 10 cents, 6 apples, which are two times

3 apples, will cost two times 10 cents, or 20 cents. Primarily
we would have gone to the Unit, finding the cost of one apple ;

but now we may omit this and compare the numbers directly.

With integral numbers this direct comparison is simple and

easy ;
but with fractions it is much more complicated and diffi-

cult. Thus, if f of a number is 20, it is difficult to see directly

that 4 of the number is f of 20
;
that is, that the relation of

f tofisf; hence, though we should avail ourselves of the

direct relation of integral numbers, it will be found much sim-

pler to compare fractions by their intermediate relations to the

Unit.



CHAPTER V.

THE EQUATION IN ARITHMETIC.

THE
comparison of mathematical quantities is mainly con-

cerned with the relations of equality. The relation of

equality gives rise to the Equation, one of the most important

instruments of mathematical investigation. The Equation

lies at the basis of mathematical reasoning; it is the key with

which we unlock its most hidden principles ;
the instrument

with which we develop its profoundest truths. The equation

is a universal form of thought, and is not restricted to any one

branch of mathematics. In its simple form it belongs to

arithmetic and geometry, as well as to algebra. The simplest

process of arithmetic, one and one are two ('l-(-l= 2),
is really

an equation, as much as x'^-\-ax=b.

In the higher departments of the subject of arithmetic, the

equational form of thought and expression becomes indispensable.

Much of the reasoning of arithmetic, which is not formally

thus expressed, may be put in the form of the equation. As

an example, take the question,
" If f of a number is 24, what

is the number?" The solution of this maybe expressed as

follows: Since f of the number = 24, ^ of the number = 12,

and f of the number=:36. Here, "the number" is the un-

known quantity, which is ascertained by comparing it with the

known quantity, 24
;
and then, by the analysis, passing from

two-thirds of the number to once the number. The illustra-

tion given is of a very simple case, but the same principle

13 (193)
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holds in the most complicated processes of arithmetical analy-
sis. If, instead of a number, we bad value, cost, weight,

labor, etc., the method of comparison and analysis would be

tbe same. We can thus see the use of the equation, the great
instrument of analysis, even in the elementary processes of

arithmetic. Here it begins that wondrous career which ends

in the deepest analysis and the broadest generalization. Here
we find the germ of that power which, in its higher develop-

ment, comprehends the whole science of Mechanics in a single

formula, thus holding, potentially, in its mighty grasp, the

mathematical laws of the universe.

The equation in arithmetic assumes several different forms.

We begin by comparing quantities—the comparison of equal

quantities giving an equation. A comparison of unequal quan-
tities gives us ratio, and a comparison of equal ratios gives us

another kind of equation, an equation of relations, usually called

^proportion. The proportion 4:2:: 6:3, is in reality an equa-

tion, as much so as 2=2, for it really means 4-i-2=6-=-3. The
treatment of the equation gives rise to several special forms of

logical procedure, such as transposition, elimination, etc.

The equation, I have said, belongs to arithmetic
;
and this

thought I desire to impress. The equation is a formal compar-
ison of two equal quantities. This comparison is being made

continually; all of our reasoning involves it; we cannot think

without it
; hence, the equation must enter into the reasoning

of arithmetic. We compare one thing with another, the

known with the unknown, and thus attain to new truths
;
and

all such forms of comparison involve the equation, and are

only possible by means of it. The simplest arithmetical pro-

cess, 1 + 1= 2, is as much an equation as Du^6u-\-du, though
the latter may express one of the profoundest generalizations
to which the human mind has attained.

Substitution.—A prominent element of arithmetical reason-

ing, accompanying the equation, is substitution. By this we
mean the using of one quantity in place of another, to which
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it is equal. The object of this is that if we have an expression

consisting of a combination of several different quantities, and

know the relation of these quantities, we may so substitute

their values that the expression for the combination may be

obtained in terms of one single quantity, the value of which

may much more readily be determined; and then the values

of the other quantities, from their relation to this quantity,

may also be found.

To illustrate, suppose we have the two conditions, twice a

number plus three times another number equals 48, and three

times this second number equals four times the first. We
can readily solve this by substituting for one of these numbers

its value in terms of the other, thus obtaining a number of

times a single quantity, equal to the known quantity 48. The

operation maybe exhibited thus:

2 times the first number + 3 times the second = 48
;

but, 3 times the second number = 4 times the first number;
hence,

'

2 times the first number + 4 times the first number= 48
;

or, 6 times the first number = 48,

and, once the first number = 8,

and from this we may easily find the second number.

Substitution is a form of deductive reasoning, as may be

seen by an analysis of the process. Take the simple example,

A+ B=24, and B=3A. We usually reason as follows: If

A+ B = 24, and B=r3A, then A+ 3A=24, or 4A= 24, etc.

That the logical character of the process may appear, we
should reason thus: If B=3A, A+ B will equal A+ 3A, from

the axiom, "If equals be added to equals the sums will be

equal." And since A+B=24, and A+B=A+ 3A, A+3A
must equal 24, from the axiom,

"
Things that are equal to the

same thing are equal to each other." Substitution is thus

seen to be strictly a deductive process. In practice these log-

ical steps are omitted for brevity and conciseness, the argument

being sufficiently clear to be readily understood.

Substitution is almost an essential accompaniment of the
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equation. The comparison of two equal quantities without

some other truth, would often be of little value in attaining
new truth. By substituting one value for another, we can

often so change the equation that it expresses a relation which

will immediately lead to some new relation of the known to

the unknown, by which we can attain to the value of the un-

known. Substitution has been supposed to be restricted to

algebraic reasoning; but this is not correct. It is extensively

employed in geometrical reasoning, and is just as appropriate
in arithmetic as in algebra.

Transposition.—In the equational form of thought, so con-

stantly recurring in arithmetic, it sometimes occurs that we
have a multiple of a quantity compared with another multiple
of the same quantity, increased or diminished by some other

quantity. In such cases it is natural to desire to unite these

two multiples into one, which is done by so changing them as

to bring them on the same side of the equation. This is what
is known as transposition. It is consequently seen that trans-

position is a process not foreign to arithmetic, but one entirely

legitimate and natural in the comparison of arithmetical ideas.

Other processes of thought analogous to those which occur

in algebra are employed in arithmetical reasoning. The mind
here takes the first step in equational thought, which, when

generalized, leads it to the high altitudes of mathematical sci-

ence. Here it plumes its wings to follow the master minds in

their lofty flights in a region of thought far beyond that of

which the mere arithmetician could even dream. The object

of this chapter is not to give a philosophical discussion of the

equation in general, but to show that it has a place even in

arithmetical reasoning, which has sometimes been doubted or

denied.



CHAPTER YI.

INDUCTION IN ARITHMETIC.

MATHEMATICS
is a deductive science, and all of its

truths, not axiomatic, may be derived by a deductive pro-

cess of reasoning. Is it possible, however, to obtain any of

these truths by Induction? This is a disputed question; it

will therefore, it is thought, be of interest to enter somewhat

into details in its discussion. I believe it can be shown that

there are many truths in mathematics that can be proved by
induction

; and, furthermore, that many of its truths were

originally obtained by an inductive process ;
and still further,

that induction is, in many cases, a legitimate method of math-

ematical investigation.

Induction, as is generally known, is a process of thought
from particular facts and truths to general ones. It is the

logical process of inferring a general truth from particular facts

or truths. Thus, if I observe that beat will expand the sev-

eral metals, iron, tin, zinc, lead, etc., I may infer, since these

are representatives of the class of metals, that heat will ex-

pand all metals. It is thus seen to be a process of reasoning,

based upon the principle that what is true of the individuals

is true of the class. The basis of Induction is the general

proposition that what is true of the many is true of the whole;

or, as Esser states it,

" What belongs or does not belong to

many things of the same kind belongs or does not belong to

all things of the same kind."

That this method of reasoning can be employed in arithme-

(197 j
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tic appears evident a priori. It is certainly not unreasonable

to suppose that we may, upon finding a truth which holds in

several particular cases in arithmetic, infer that it will hold

good in all similar cases. This conclusion is strengthened by

the fact that arithmetic is somewhat special in its nature, par-

ticularly so as compared with algebra. Its symbols represent

special numbers, and dealing thus with special symbols, it is

to be expected that we would discover some truths which hold

in particular instances, before we know of their general applica-

tion. That it is not only possible to reason inductively in

arithmetic, but that we do reason thus, may be shown by act-

ual examples.

First, take the property of the divisibility of numbers by

nine. Suppose that, not knowing this property, I divide a

number by 9, and then divide the sum of the digits by 9, and

thus see that both remainders are the same. Suppose I should

try this with several different numbers, and seeing that it holds

o-ood in each case, infer that it is true in all cases
;
should I

not have entire faith in my conclusion, and would not this

inference be well founded ? This is an inductive inference,

and is as legitimate as the inference that heat expands all

metals, because we see that it expands the several particular

metals, iron, zinc, tin, etc.

Second, take a number of two digits, as 3t
;
invert the

digits, and take the difference between the two numbers, and

we have 73— 3t equal to 36, in which the sum of the two

digits, 3 and 6, equals 9. If we take several other numbers of

two digits and do the same, we shall find the sum of the two

digits to be also 9
;
and observing that this is true in several

cases, we may infer that it is true in all cases, in which we

aarain have a true inductive inference.

Third, take a proportion in arithmetic, and, by actual mul-

tiplication, we shall see that the product of the means equals

the product of the extremes. Examining several proportions,

we shall see that the same is true in each case, and from these
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we can infer that it is true in all eases, in which we again

arrive at a general truth by induction. This is not only le<jit-

imate inference, but it is actually the way in which pupils

naturally derive the truth before they understand how to

demonstrate it.

Now, of course each of the above principles will admit of

rigorous demonstration by deduction; what I hold, and what

I think is clearly shown, is, that they cnn also be derived by

induction. Deduction would prove that they must be so
;

in-

duction merely shows that they are so. Many other examples

from arithmetic might be given in illustration of the same

thing. But the use of induction in mathematics is not con-

fined to arithmetic; if we go to algebra we shall find that the

same method of reasoning may be, and indeed is, employed

there. The theorem, a;"—?/" is divisible by x—y, may be

proved by pure induction. Try the several cases x^—y\

x^—if, x^—y\ etc., and seeing that the division is exact in the

several cases, it is entirely legitimate to infer that it will be

exact in all similar cases, or that x"—y" is divisible by x—y.
The same thing may be shown in many other cases, but it is

needless to multiply examples. Even in geometry the same

method may be applied. I knew a young person who, before

he studied geometry, derived by trial and induction the fact

that there may be a series of right-angled triangles, whose

sides are in the proportion of 3, 4, and 5
;
and there is no doubt

that the ancients knew that the square of the hypothenuse

equaled the sum of the squares on the other two sides, long

before Pythagoras demonstrated it.

I have said that some of the truths of mathematics were

discovered by induction
; among these the most prominent,

perhaps, is Newton's Binomial Theorem. Newton discovered

this theorem by pure induction. He left no demonstration of

it, and yet it was considered of so much importance that it

was engraved upon his tomb. His first principles of Calculus

were somewhat inductive in their origin, as may be seen in

his Principia.
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The following formula is used for finding the number of

primes up to the number x, when ^ is a large number:

A log x—B '

in which N denotes the number of primes, and A and B are

constants to be determined by trial. This formula was
derived by a process of induction. It is found to satisfy the

tables of prime numbers, but no deductive demonstration of it

has yet been*given, and it must therefore be regarded as empir-
ical.

In the theory of numbers we have the following remarkable

property: Every number is the sum of one, two, or three

triangular numbers ; the sum of one, two, three, or four

square numbers; the sum of one, two, three, four, or five

pentagonal numbers, and so on. This law, though known to

be entirely general, has never been demonstrated except for

the triangular and square numbers. It was discovered by

Fermat, who intimates, in his notes on Diophantus, that he

was in possession of a demonstration of it; which, however, is

doubtful, since such mathematicians as Lagrange, Legendre,
and Gauss have failed to demonstrate it. The general law is

at present accepted on the basis of induction.

It is thus clearly seen that many of the truths of mathemat-

ics can be derived by induction; that is, by inferring general

truths from particular cases. It is not claimed, however, that

this changes the nature of the science. I have before said

that mathematics is a deductive science; my object has been

merely to show the error of those who hold that it is impos-
sible to derive any of the truths of mathematics by induction.

I have called especial attention to this subject, on account

of the obscure and conflicting views which seem to exist con-

cerning it. Several authors speak of the inductive methods of

treating arithmetic, while others as positively assert that there

can be no inductive treatment of the science. The logicians

lead us to infer that induction cannot be applied to mathe-
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matics, and not a few of them distinctly assert it. Dr.

Whewell says, in speaking of mathematics: "These sciences

have .... no process of proof but deduction." Prof.

Podd wrote several pamphlets to prove that there can be no

such thing as inductive reasoning in arithmetic
;
and several of

those whom he criticised in these articles, have acknowledged
the correctness of his views, and consequently, their own
mistakes.

These views, I have already shown, are only partially true.

Arithmetic is a deductive science; all of its truths may prob-

ably be derived by deduction; but it is equally true that some

of them may also be obtained by induction, as has been shown
above

;
and also, that some of them are accepted alone on

induction, having never been demonstrated.

Great care should beexei'cised, however, in the use of induction

in mathematics. Several supposed truths which were derived

by induction were subsequently found to be untrue. Fermat
asserted that the formula, 2'"-|-l is always a prime, when
m is taken any term in the series 1, 2, 4, 8, 16, etc., but

Euler found that 2^'^-|-l is a composite number. Lagrange
tells us that Euler found by induction the following rule for

determining the resolvability of every equation of the form

a;^-i-Ay='B, when B is a prime number ; the equation must be

possible when B shall have the form, 4:An-\-r'\ or 4An4-?'^—A.

This proposition holds good for a large number of cases, and

was thought by many mathematicians to be entirely general,

but the equation, x^— ^9y'^=10l, Lagrange proves to be an

exception to it.

The danger of inductive inference in mathematics is also seen

in some of the formulas which have been presented for finding

prime numbers. Several of these hold good for many terms,

and were supposed to be general, but were at last found to be

only special. Thus, the formula x'' 4-^+41 holds good for forty
values of x. The formula x'^-\-x-\- 17 gives seventeen of its first

values prime, and 2a;'^+29 gives twenty-nine of its first values

prime.
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Having shown that mathematics, though a deductive sci-

ence, will admit, in some instances, of an inductive treatment,

it may be remarked that such treatment is especially adapted to

young pupils in the elementary processes of arithmetic. It is

difficult for them to draw conclusions from the principles estab-

lished by a deductive demonstration
; hence, in some cases, it

may be well for them to employ the inductive method. The

rules for working fractions may be derived by an inductive

inference from the solution of a particular example ;
and this

method will be much more readily understood than the deriva-

tion of them from general principles deductively established.

The method is to solve a particular problem by analysis, and

then derive a general method by an inductive inference from

such analysis. Thus analysis and induction become, as it

were, golden keys with which we unlock the complex combina-

tions of numbers.

It will be well, however, to lead the pupils to the deductive

method as soon as possible. Most students will make the

transition naturally. The better reasoners among them will

themselves rise from this inductive method, being satisfied

only with a deductive demonstration
;
and in this they should

be encouraged. They will often see the deductive, or necessary

idea, behind the inductive process, and thus pass spontaneously

from the particular fact to the general truth. They will some-

times discover a truth by trial and inference, that is, by induc-

tion, and then learn to demonstrate it deductivelj^ ;
and it will

be a useful exercise for pupils to have some special drill in this

manner. They will thus see the relation of the two methods

of reasoning, and be impressed with the deductive nature of

the science of arithmetic, and the necessary character of its

truths.
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CHArTER I.

ADDITION.

THE
fundamental synthetic process of arithmetic is Addi-

tion. Beginning at the Unit as the primary numerical

idea, numbers arise by a process of synthesis. By it we pass

from unity to plurality; from the one to the many. This

mental process w^hich gives rise to numbers, we naturally

extend to the numbers themselves, and thus synthesis becomes

the primary operation of arithmetic. This general synthetic

process is called Addition.

Definition.
—Addition is the process of finding the aum of

two or more numbers. The sutti of two or more numbers is

a single number which expresses as many units as the several

numbers added. The sum is often c'alled the amount.

Addition may also be defined as the process of uniting sev-

eral numbers into one number which expresses as many units

as the several numbers united. This last definition includes

both of the previous ones, and avoids the use of the word num.

The former definition is, however, preferred on account of

its conciseness and simplicity, and is the one usually adopted

by arithmeticians.

Principles. — The process of addition is performed in

accordance with certain necessary laws which are called prin-

ciples. The most important of these are the following:

I. Only similar numbers can he added. Thus, we cannot

find the sum of 4 apples and 5 peaches, for if we unite the

numbers we shall have neither 9 apples nor 9 peaches. It has

(207)
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been claimed, that the sum is 9 apples and peaches ; in proof
of which it is said we speak properly of " 12 knives and forks,"

meaning 6 knives and 6 forks. Such a combination is, how-

ever, popular rather than scientific; it is not what we mean by
a strict use of the word addition.

It may also be observed that dissimilar numbers may be

brought under the same name and thus become similar, when

they can be united in one sum. Thus, 4 sticks and 5 stones

may be regarded as so many objects or things, and their sum

will be 9 objects or 9 things. So in writing units and tens in

the Arabic system; they cannot be combined directly, but by

reducing both to tens or both to units, the addition can be

effected.

II. The sum is a number similar to the numbers added.

This is evidently an axiomatic truth. The sum of 4 cows and

5 cows is 9 coivs, and cannot be horses or sheep, or anything
besides cows. An apparent exception w^hich will be under-

stood by what is said above is, that the sum of 3 horses and

5 cows is 8 animals.

III. The sum is the same in whatever order the numbers

are added. This is evident from the consideration that ih any
case we have the combination of the same number of units,

and consequently the same sum.

Cases.—Addition is divided philosophically into two gen-

eral cases. The first case consists in finding the sums of

numbers independently of the notation used to express them.

The second case consists in finding the sum of numbers as

expressed in written characters, and thus grows out of the use

of the Arabic system of notation. The former deals with small

numbers which can be united mentally, and may be called

mental addition ; the latter is used with large numbers as

expressed with written characters, and may be called written

addition. The former is a process o^ pure arithmetic; the

latter is incidental to the system of notation which may be

employed, and is not essential to number in itself considered.
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The former method is an independent process, complete in

itself; the latter is dependent upon the former for the elements

with which it works. By the former case we obtain what we

may call the primary sums of addition, or what is generally

known as the Addition Table, which we make use of in adding

large numbers expressed by the Arabic method of notation.

Treatment.—The primary synthetic arithmetical process is

that of increasing by units. This process is presented in the

genesis of numbers where, by counting, we pass from one num-

ber to another immediately following it, by the addition of a

unit; and it also lies at the foundation of the method by which

we find the sum of any two or more numbers. By it we obtain

the elementary sums of the first case, and then we use these

sums in solving the problems of the second case. The method

of treating both of these cases will be presented somewhat in

detail.

Case I. To find the primary sums of arithmetic.—The

primary sums of arithmetic are found by the same process of

counting by which our ideas of numbers are generated. The

sum of two numbers is primarily determined by beginning at

one number and counting forward from it as many units as are

in the number to be added to it. Thus, to find the sum of any
two numbers, &% five and /bwr, we begin ^i five and count four

successive numbers, six, seven, eight, nine, and seeing we
reach nine, we know that five and four are nine. In this way
we obtain the sums of all small numbers, and then commit

them to memory, that we may know them when we wish to

use them without passing through the steps by which they
were obtained.

To be assured that this is the real method, we have but to

watch young children when adding, and we shall see that they
do actually find the sums of numbers in the manner explained.

They may often be seen counting their fingers, or marks on the

slate, in performing addition. The elementary sums thus

found are the basis of addition. We fix them in the memory
14
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as we do the elementaiy products of the multiplication table,

and employ them in finding the sums of larger numbers.

These primary sums may be regarded as the axioms of

addition. They are intuitive truths, that is, truths which can-

not be demonstrated, but are seen by intuition. "Why is it,"

says Whewell, "that three and two are equal to four and one?

Because if we look at five things of any kind, we see that it is

so. The five are four and one; they are also three and two

The truth of our assertion is involved in our being able to

conceive the number five at all. We perceive this truth by

intuition, for we cannot see, or imagine we see, five things,

without perceiving also that the assertion above stated is

true."

Case II. To add numbers expressed by the Arabic system

of notation.—The principle by which we find the sum of

larger numbers expressed by the Arabic system, is that of

adding by parts. Having learned the sums of small numbers,

we separate larger numbers into parts corresponding to these

small numbers, and then find the sum of these parts which,

united, will give the entire sum. Thus in practice we first add

the units group, then the tens group, and thus continue until

all the groups are added. If the sum of any group amounts

to more than nine units of that group, we incorporate the tens

term of the sum with the sum of the next higher group.

Solution Thus, in adding the two numbers 368 and 519,

we write the numbers so that similar terms

stand in the same column, and begin at the operation.

riffht to add. 9 units and 8 units are IT units,
^^^

'-

579
or 1 ten and 7 units; we write the 7 units, and

947
add the 1 ten to the sum of the next column.

7 tens and G tens are 13 tens, and 1 ten are 14 tens, or 1 hundred

and 4 tens; we write the 4 tens, and add the 1 hundred to the

next column. 5 hundreds and 3 hundreds are 8 hundreds, and

1 hundred are 9 hundreds, which we write in hundreds place

The entire sum is therefore 947.
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This method of adding by parts is the I'esult of the beautiful

system of Arabic notation, whereby figures in different positions

express groups of different value. It is peculiar to this method

of expressing numbers, and illustrates its great convenience and

utility. In adding large numbers, it would be exceedingly dif-

ficult, if not impossible, for the mind to unite them directly into

one sum; but by adding the groups separately, the process is

simple and easy.

Rule.—One of the most common errors of arithmetic is found

in the statement of the rules of the fundamental operations.

This error consists in confounding the meaning of the words

figure and number. Thus, it is usual to speak of "adding the

figures," of "carrying the left-hand figure to the next column,"

etc. This is a mistake involving a looseness of thought that

ought not to be permitted to remain in the text-books. We
cannot add figures, we can add only the numbers which they

express.

This error can be avoided in several ways. The method

here suggested is the use of the word term for figure. The

word term is already employed in a similar manner in algebra.

It may be used in a dual sense, embracing both the figure and

the number expressed by the' figure. Numbers and figures

have a definite signification, and one cannot be used for the

other without a mistake
;
but it will be both correct and con-

venient to use one word for both. No ambiguity will be occa-

sioned by it, as the particular meaning may be determined by
the application. In this way we may avoid the error of speak-

ing of "adding figures," and also the inconvenient expression

sometimes employed of "adding the numbers denoted by the

fis'-ures."

Why do we write the numbers as suggested, and why do

we begin at the right hand to add, are questions very fre-

quently asked of the arithmetician. In adding numbers we
write them one under another, so that figures of the same

order stand in the same vertical column, for convenience in
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adding. We begin at the right hand to add as a matter of

convenience also, so that when the sum of any column exceeds

nine units of that column, we maj unite the number denoted

by the left hand term to the next column. We can also add by

beginning at the left, but it will be seen on trial to be much less

convenient. We commence at the bottom of a column to add

as a matter of custom
;
in practice it is sometimes more con-

venient to begin at the bottom and at other times at the top.

Were the scale any other than the decimal, the principle and

method of adding would be the same. In addition of denom-

inate numbers, where the scales are irregular, the same general

principle is employed. We find the sum of a lower order of

units, reduce this to the next higher order, etc. The difference

in practice is that, with the decimal scale, the reduction is evi-

dent from the notation, while in the irregular scales we must

divide to make the reduction. The general principle of

thought in the two cases is, however, identical.



CHAPTER II.

SUBTRACTION.

rpHE fundamental analytical process of arithmetic is Sub-

X traction. This process arises from the reversing of the

fundamental synthetic process. The primary operation of

arithmetic, as previously seen, is synthesis. Every synthesis

implies a corresponding analysis; hence, the second operation

of arithmetic, as a logical consequence, must be the oppo-

site of the primary synthetic process. In the former case we

united numbers to find a sum; here we separate numbers to

find a difference. This general analytic process has received

the name of Subtraction.

Definition.
—Subtraction is the process of finding the differ-

ence between two numbers. The difference between two num-

bers is a number which added to the less will give a sum equal

to the greater. The greater number is called the Minuend; the

less number is called the Subtrahend. Subtraction may also

be defined as the process of finding how much greater one

number is than another; or, as the process of finding a num-

ber which, added to the smaller of two numbers, will equal

the greater. The definition first presented is, however, pre-

ferred.

Gases.—Subtraction is philosophically divided into two

general cases, like addition. The first case consists in finding

the difference between two numbers, independent of the nota-

tion used to express them. The second case consists in find-

ing the difference between numbers as expressed in written

(213)
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characters, and thus grows out of the use of the Arabic nota

tiou. The first is a case of pure arithmetic, iudependeut of any

notation
;
the latter is incidental to the notation adopted to

express numbers. The former deals with small numbers, and

the process being wholly in the mind may be called Mental

Subtraction ; the latter is employed in subtracting large num-

bers expressed with written characters, and may be called

Written Subtraction. The former is an independent process

complete in itself; the latter has its origin in the Arabic system

of notation, and is dependent upon the former for its elementary

differences. In the ordinary text-books, the second case is

usually divided into tw^o separate cases, depending upon the

size of the terms in the minuend and subtrahend; but such

division is designed to simplify the subject in instruction, and

is, tiierefore, a practical rather than a logical division of the

subject.

Principles.—The operations in subtraction depend upon some

general laws called principles. The most important of the fun-

damental principles of subtraction, are the following:

1. Similar numbers only can he subtracted. Thus, we can-

not find the difference between 9 apples and 4 peaches, for if

we take the difference between the numbers 9 and 4, which is

5, it will be neither 5 apples nor 5 peaches. Suppose, how-

ever, that we have 9 apples and peaches, consisting of 5 apples

and 4 peaches; can we then subtract 4 peaches, and will not the

remainder be 5 apples? Or suppose we have a collection of

knives and forks consisting of half a dozen of each, which are

sometimes spoken of as "12 knives and forks;" can we not

take iiway 6 forks and leave remaining 6 knives? In reply, we
reniiirk that such a "taking away" is not what we mean by
subtraction, which is defined as the process of finding the

difference of two numbers.

It is also manifest, as in addition, that if we regard the dis-

similar numbers as having the same generic name, they
will then become similar and we can subtract them. Thus, 9
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apples and 4 peaches nvdj be regarded as 9 objects and 4

objects, the difference of which is 5 objects. So iu subtracting

the different orders of units iu the Arabic scale, we cannot sub-

tract them directly as different orders, but by reducing them

.to the same denomination, the subtraction is I'eadily performed.

2. Tfie difference is a number similar to the minuend and

subtrahend. This is a necessary truth intuitively apprehended.

Thus 4 men subtracted from 9 vien, leaves 5 men, and not

5 girls, or 5 women. If we have a group consisting of 9

persons, 5 men and 4 women, and take away 4 women, there

will remain 5 men
;
hence we might infer that 4 women taken

from 9 persons leaves 5 men
;
but this is not a universal truth;

neither, as stated above, is such a taking away, what we mean

by subtraction.

3. If the minuend and subtrahend be equally increased

or diminished, the remainder will be the same. ' This is in-

cluded in the axiom that the difference between two numbers

equals the difference between them when equally increased or

diminished. The truth of such a proposition is seen to be

necessary as soon as the proposition is clearly apprehended by

the mind.

4. The minuend equals the sum of the subtrahend and

remainder; the subtrahend equals the diff'erence between the

minuend and remainder. These two principles flow from the

conception of subtraction, and the relation of the several terms

to one another. Given a clear idea of the process of subtraction,

and the relation of the three terms in the process, and these

truths immediately follow.

Method.— The two cases of subtraction, as of addition,

require distinct methods of treatment. In the former case we

subtract directly as wholes, finding the difference by reversing

the process of addition. In the latter case we subtract by

parts, using the elementary differences to find the differences

of the corresponding parts. An explanation of both cases wil'

be presented.
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Case I. To find the primary differences in arithmetic.—
The elementary diflerences are obtained by a reversion of

the process of finding the elementary sums. This mav l)e

done in two distinct ways. First, we may find the difference

between two numbers by counting off from the larger number
as many units as are contained in the smaller number. Thus,
if we wish to subtract four from 7iine, we may begin at nine

and count backward four units: thus, eight, seven, six, five ;

and finding that we reach five, we know that four from nine

leaves five. This is the reverse of the process by which we
obtained the elementary sums in addition. In one case we
count on for the sum

;
in the other we count off for the differ-

ence.

The other method consists in finding the elementary differ-

ences by deriving them by inference from the elementary
sums. Thus, in finding the difference between ^ue and nine,

we may proceed as follows: since /bar added to five equals

nine, nine diminished by five, equals four. This process, put
in a formal manner, is as follows: The difference between two

numbers is a number which, added to the less, will equal the

greater; but, four added to five, the less, equals nine, the

greater; hence, four is the difference between nine and five.

In other words, we know that five from nine leaves four,
because ybitr added to five equals nine.

The difference between these two methods is radical. By
the former method we derive the difference by direct intuition,

as we obtained the sums in addition. We see that the differ-

ence \s five. By the second method we infer that the differ-

ence \sfive, without directly seeing it. The latter is a process

of reasoning, and will admit of being reduced to the form of

fi. syllogism, as is shown above. The point made here is an

important one, and will throw some light on the nature of

tiie science of arithmetic, which, by the metaphysicians, has

been somewhat imperfectly understood.

The second method is preferred in practice to the first, as we
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can make use of the elementary sums in finding the elementary

differences. If the first method is used, it will be necessary to

commit the elementary differences as well as the elementary

sums. By making the differences depend upon the sums, this

labor will be avoided.

Case II. To subtract numbers expressed by the Arabic

scale of notation. With large numbers we cannot subtract the

one directly from the other as with small numbers; we there-

fore divide the labor, subtracting \)j parts; that is, we find

the difference between the corresponding groups of each term.

By this means the labor of subtracting is greatly facilitated, so

that with large numbers, which it would be almost, if not

quite impossible otherwise to subtract, the operation becomes

simple and easy.

lu the subtraction of numbers expressed in the Arabic scale

of notation, two distinct cases arise; first, when the number

of each group of the subtrahend does not exceed the correspond-

ing number of the minuend
; second, when the number of a

group in the subtrahend exceeds the corresponding number in

the minuend. In the first case we readily subtract each group
in the subtr-ahend from the corresponding group in the minu-

end. In tte second case a difficulty arises, for which we have

two distinct methods of explanation, called respectively the

Method by Borrowing, and the Method by Adding Ten.

To illustrate these methods, suppose it be required to sub-

tract 526 from 874.

First Method.—Having the numbers writ- operation.

ten as in the margin, we commence at the 874
526

right to subtract, and reason thus: we cannot

take 6 units from 4 units, we will therefore ^^°

take 1 ten from the 7 tens, and add it to the four units, which

will give 14 units. We then subtract 6 units from 14 units,

which gives 8 units. We then subtract 2 tens from the 6 tens

which remain after taking away the 1 ten, which leaves 4

lens. We also subtract 5 hundreds from 8 hundreds, leaving

3 hundreds; hence the difference is 348.
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Second Method.—By the second method we reason ihiis:

We cannot subtract 6 units from 4 units, hence we add 10 to

the 4, making 14 units, and then say, 6 units from 14 units

leave 8 units. Now, since we have added 10 to the minuend,
that the remainder may be correct we must add one ten to the

subtrahend
;
hence we have 3 tens from 7 tens leave 4 tens,

and also as before, 5 hundreds from 8 hundreds, 3 hundreds.

This solution is founded upon the principle that the dijference
between two numbers equals the diffej-ence between tlie two
numbers equally increased.

The first method seems preferable on account of its simpli-

city of thought, as it merely changes the form of the minuend.

Pupils see the reason of the process by this method more

readily than by the method of adding ten. The second method,
however, is preferred by some teachers for at least two reasons.

First, it is the method generally used in practice; nearly all

persons increasing the next lower term after
"
borrowing,"

instead of diminishing the upper one. Second, it is, in many
cases which arise, much more convenient than the other

method, as in subtracting 12345 from 20000. By the second

method, the solution of this problem will be much simpler
than by the first.

Another Method.—There is still another method of subtract-

ing, which, if not of any practical value, is at least

of sufficient interest to be worthy of mention. It *74r)82

consists in subtracting the terms of the subtrahend ^^[^5
from 10, and adding the difference to the corres- 46817

ponding terms of the minuend. Thus, in subtracting 27865
from 74082, we say 5 from 10 leaves 5, and 2 are 7

;
6 and 1 to

carry are 7, and 7 from 10 leaves 3, and 8 are 11
;
set down the

1
;

8 from 10 leaves 2, and 6 are 8; 7 and 1 to carry are 8, and
8 from 10 leaves 2, and 4 are 6, etc.

Rule.—In the rule for subtraction, arithmeticians make the

«ame mistake as in the rule for addition. Thus, they say,
" Subtract each figure of the subtrahend from the figure above
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it in tlie minuend," or "take eacli figure of the subtraliend

from the figure above it," or, "if a figure in the lower number

is larger than the one above it," etc. These errors are almost

inexcusable. We cannot subtract figures, we subtract num-

bers. If we "take one figure irom another" the other figure

will be left, not the difference of the numbers expressed by
them. A figure is larger or smaller according to the kind of

type in which it is printed. The figure two may be large (2)
'or small (2). One figure may be larger than another, and

express a smaller number; as, 3 and 8.

This error may be avoided by the use of the word term for

the number expressed by the figure. The rule will then read,

"Begin at the right and take each term of the subtrahend from

the corresponding term of the minuend," etc. "If a term of

the subtrahend is greater than the corresponding term of the

minuend," etc.

Remarks.—We write terms of the same order in the same

vertical column for convenience in subtracting, since only num-

bers of the same group can be subtracted. We commence at

the right, so that when a term of the subtrahend expresses

more units than the corresponding term of the minuend, we

may take it from the next higher group of the minuend
; or, if

we use the other method of subtracting, that we may add 10

of a group to the minuend, and 1 of the next higher group to

the subtrahend; in other words, we commence at the right as

a matter of convenience, as will be seen in the attempt to sub-

tract by commencing at the left.

The taking one from the next term of the minuend is called

"
borrowing,

^^ and the adding one to the next term of the sub-

trahend is called "carrying.'" The accuracy of these words

has been questioned. To borrow is to obtain that which we

expect to return to the one from whom we borrow. .It does

not seem much like
"
borrowing" to take from one thing and

return what we take to another. It is something like "robbing

Peter to pay Paul." In regard to the term "carrying," it



220 THE PHILOSOPHY OF ARITHMETIC.

may be asked in what it is carried
; though we may answer,

as the boy did,
" we carry in the head." Notwithstanding

these objections, the terms borrowing and carrying have been

sanctioned by good usage ; and, since custom is the lawgiver
in language, we may accept them as correct. Their use is a

matter of convenience, also, as they indicate operations for

which we have no other technical terms. It may be remarked

that it required many years for the people of Europe to become

familiar with the processes of borrowing and carrying. In a

work on arithmetic by Bernard Lamy, published at Amster-

dam in 1692, the author states that a friend sends him the

mode of using the carriage in subtraction, he having previ-

ously borrowed from the upper line; and this is presented as

a novelty.



CHAPTER III.

MULTIPLICATION.

THE
general process of synthesis is Addition. Having

become familiar with this general synthetic process in ac-

cordance with the law of thought, from the universal to the

particular, we begin to impose certain conditions upon it.

The numbers primarily united were of any relative value; if,

now, we impose the condition that the numbers united shall be

all equal, with the new idea of the times the number is used,

we have a new process of synthesis, which we call Multiplica-

tion.

Multiplication is thus seen to be a special case of addition,

in which the numbers added are all equal. The idea of mul-

tiplication is contained in addition, and is an outgrowth of it.

They are both synthetic processes—one being a general, and

the other a more special synthesis. Multiplication, however,
involves the idea of "

time.s,^^ which does not appear in addi-

tion. This notion of "
times,^^ originating in multiplication, is

one of the most important in mathematics, and is itself the

source of a large portion of the science. Thus, in involution

there is no apparent trace of the idea of addition, and the same

is true in respect of other processes. If, however, we follow

these processes back far enough, we shall find they have their

origin in the primary process of addition. Even involution

may be performed by successive additions.

Definition.—Multiplication is the process of finding the

product of two numbers. The Product of two numbers is

(221)
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the re&ult obtained by taking one number as many times as

there are units in the other. The number multiplied is called

the Multiplicand. The number by which we multiply is called

the Multiplier.

This definition of multiplication, introducing the word Pro-

duct, makes it similar to the definitions of addition and sub-

traction, in which the terms sum and difference are used.

Defining Division in a similar manner by using the 'word Quo-

tient, we shall have a harmony in the definitions of the four

fundamental rules, which has not hitherto existed. I have

adopted this method in my Higher Arithmetic, and shall intro-

duce it into my ofher mathematical works.

Multiplication is usually defined as the process of taking one

number as many times as there are units in another. This

definition is not entirely satisfactory. It says nothing about

finding a result, which is specified in the definitions of addition

and subtraction, and which seems to be necessary also here.

To supply this omission, I have previously defined multiplica-

tion as the process of finding the result of taking one number

as many times as there are units in another. After a very
careful consideration of the subject, however, I have concluded

to adopt the method of defining multiplication as the process of

finding the product, thus securing a uniformity in the defini-

tions of the fundamental operations.

Principles.—The operations of multiplication are founded

upon certain necessary truths called principles. The most

imj:)ortant of the principles of multiplication are those which

follow :

1. The multiplier is always an abstract number. For, the

multiplier shcTu's the number of times the multiplicand is

taken, and hence must be abstract, since we cannot take vinj-

\h\ug yards times or bushels times, etc. From this it follows

that such problems as "Multiply 25 cts. by25cts.,"or "2s. 6d.

by itself" are impossible and absurd. In finding areas and

volume-, we speak of multiplying feet by feet for square feet,
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square feet by feet for eubic feet, etc. It should be remem-

bered, however, that this is merely a convenient expression,

which does not indicate the actual process. In finding the

area of a rectangle, we multiply the number of square feet on

the base by the number of such rows; the multiplicand being

square feet and the multiplier an abstract number.

2. The x>roduct is always aimilar to the multiplicand. This

is manifest from the fact that the product is merely the sum of

the multiplicand used as many times as there are units in the

'

multiplier. Thus, 3 times 4 apples are 12 apples, and cannot

be I'i pears or peaches.

3. The product of two numbers is the same, whichever is

made the multiplier. This may be seen by placing ,^ :,< * *

3 rows of 4 stars each in the form of a rectangle, ^^ x^ ^t, >ic

as in the margin. Now these may be regarded :,: ^ ^ =^

as 3 rows of 4 stars each, or 4 rows of 3 stars

each
;
hence 3 times 4 is the same as 4 times 3

;
and the same

may be shown for any other two numbers.

4. If the multiplicavd be multipilied by all the parts of the

multiplier, the ium of all the partial products will be the true

product. This grows out of the general principle that the

whole is equal to the combination of all of its parts. It is

applied in finding the product of two numbers expressed by
the Arabic system.

5. The multiplicand equals the quotient of the product
divided by the multiplier ; the multiplier equals the quotient of
the product divided by the multiplicand. These two principles

are manifest to the mind as soon as it attains a clear idea of

the processes of multiplication and division, and the relation

of the two to each other.

Cases.—Multiplication is philosophically divided into two

general cases. The first case consists in finding the products

of numbers independently of the method of notation used to

express them. The second case is that which grows out of the

use of the Arabic svstem of notation. The former deals with
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small numbers mentally, and may be called Mental MuUiplica-

tion; the latter deals with large numbers, expressed by means

of written characters, and may be called Written Ilultiplica-

tion. The former is an independent process complete in itself,

and belongs to pure number; the latter has its origin in the

Arabic system, and is dependent upon the former for its ele-

mentary products.

Method.—The general method is to find the product of small

numbers by addition, and then use these in the multiplication

of large numbers. The first case is thus made to depend upon

addition, and the second case upon the first case. Both cases

will be formally presented.

Case I. To find the elementary products of arithmetic.

The first object in multiplication is to find the elementary pro-
ducts. By the elementary products are meant the products of

small numbers which, arranged together, constitute what is

called the Multiplication Table. These elementary products

are derived by addition. Thus, we ascertain that four times

five are twenty, by finding, by actual addition, that the sum

oi four fives is twenty. In this manner all the elementary

products of the table were originally obtained. This table is

committed to memory in order to save labor and facilitate the

process of calculation. We are thus able to tell immediatelj'

the product of two small numbers, which otherwise we should

be obliged to obtain by an actual addition.

The elementary products are not derived by intuition, and

are therefore not axioms; they are the result of a process of

reasoning. Thus, in order to find the product of three times

four, we may reason as follows: Three times four is equal

to the sura of three fours; but the sum of three fours, we
find by addition, is twelve ; hence, three times four is twelve.

This is as valid a syllogism as "A is equal to B; but B is

equal to C; hence, A is equal to C."

The extent of the table, for all practical purposes, is limited

by "nine times nine." That is, with our Arabic system of
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notation and the decimal method of numeration, it is not neces-

sary that the elementary products should extend beyond
" nine

times." It is not at all inconvenient, however, but quite nat-

ural that it should include eleven and twelve times, since the

names eleven and twelve are a seeming departure from the dec-

imal system of numeration.

Case II. To multiply numbers expressed by the Arabic

system of notation. When the numbers are small, as we have

seen, we multiply them directly as wholes; when we extend

beyond the elementary products, the principle is to multiply

by parts. Thus, instead of multiplying the multiplicand as a

single number, we multiply first one group, then the next group,

and so on, as we united numbers in addition. Also, when the

multiplier exceeds nine—or in practice, twelve—that is, when

it is expressed in two or more places, we multiply first by the

units term, then by the tens term, etc.; and then take the sum

of these partial products.

To illustrate, let it be required to multiply 65 by 3*7. To

multiply by thirty-seven as a single number, would be quite a

difficult task. We do not attempt this, however, but first mul-

tiply by 7 units, one part of 37, and then by 3 tens, the other

part of 37, and then take the sum of these products. It is also

seen that the number 65 is not multiplied as a single number,

but by using its parts, 5 units and 6 tens. The method of

explaining the process is as follows:

Solution—Thirty-seven times 65 equals 7 operation.

times 65 plus 3 tens times 65. Seven times 5 65

units are 35 units, or 3 tens and 5 units; we 3'

write the 5 units, and reserve the 3 tens to add 455

to the product of tens. Seven times 6 tens

are 42 tens, which, increased by 3 tens, equals
2405

45 tens, or 5 tens and 4 hundreds, which we write in it.-5

proper place. Multiplying similarly by 3 tens, we have 5 tens

9 hundreds and 1 thousand; and taking the sum of these two

partial products, we have 2405.

15
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This method of multiplication is founded upon, and is only

possible with a system of notation similar to the Arabic.

Without some such method of expressing numbers in char-

acters, the multiplication of large numbers would be exceed-

ingly laborious, if not altogether impossible. We are thus

continually reminded of the advantages of the Arabic system
of notation, and learn almost to venerate the people and

country that conferred so great a boon upon the human race

by its invention.

Rule.—The error of confounding the meaning of figure and
number is repeated in the rule for multiplication. The rule, as

usually given is, "Multiply each figure of the multiplicand by
the multiplier," etc.,or "Multiply the multiplicand by each figure

of the multiplier," etc. This error is easily avoided by the use of

the word term for figure. It should be remembered that we have

two distinct things, the number and the numerical expression.
The parts ofthe numerical expression are ^grti?-es; the parts of the

entire number are numbers. The word term maybe employed
to express both of these, without any obscurity and with much
convenience. The rule will then read, "Multiply each term of

the multiplicand by the multiplier," etc., or, "by each term of

the multiplier," etc.

Remark.—We write the numbers as indicated above for con-

venience in multiplying. The placing of the multiplier under

the multiplicand, instead of over it, and multiplying from

below, is a mere matter of custom, corresponding with the

method of adding and subtracting. We begin at the right
hand to multiply so that when any product exceeds nine, we
may incorporate the number expressed by the left hand figure
with the following product. The convenience of this will be

readily appreciated by performing the multiplication by begin-

ning at the left. It was formerly the custom, however, to

begin at the left, writing the partial products in their order and

subsequently pollectiug them.
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DIVISION,

rrUIE general process of analysis is Subtraction. After the

-L mind becomes familiar with this general process, it begins

to extend and specialize it, and thus arises a new process called

Division. Division is, therefore, a special case of sub'traction,

in which the same number is to be successively subtracted with

the object of finding how many times it is contained. The idea

of Division is thus seen to be contained in that of Subtraction,

and is the outgrowth of it.

Division may also be regarded as arising from a reversing

of the process of multiplication. In multiplication, we obtain

the product of two numbers
;
and since the product is a number

of times the multiplicand, we may regard it as containing

the multiplicand a number of times. Thus, since four times

Jive are twenty, twenty may be considered as containing

Jive, Jour times. Division is thus regarded as an analytic

process, arising from reversing the synthetic process of multi-

plication.

It thus appears that Division may have originated in either

of two different ways. In which way it did actually arise, it

is impossible for us to decide with certainty. It has generally

been supposed, judging from the old definition that " Division

is a concise method of Subtraction," that it had its genesis in

Subtraction. My own opinion, however, is that it originated

by reversing multiplication, for which I state the following

reasons :
—First, as subtraction arose from reversing the pro-

(227)
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cess of addition, so is it natural to suppose that division, a

concise subtraction, would arise from reversing multiplica-

tion, a concise addition. Second, division involves, as essen-

tial to it, the idea of "/mes," which had already appeared
in multiplication. It seems much more natural to take the

idea of times from multiplication, where it already existed, than

to originate it from the process of subtraction.

Definition.—Division is the process of finding the quotient

of two numbers. The quotient of two numbers is the number

of times that one number contains the other. The number

divided is the Dividend ; the number we divide by is the

Divisor. The definition usually given is, "Division is the

process of finding how many times one number is contained in

another." This is regarded as correct, but is less simple and

concise than the one above suggested.

Defining division in this manner, we have a simple and con-

cise definition, easily understood and logically accurate. It

follows the method generally adopted for addition and sub-

traction, and which I have also suggested for multiplication;

and presents a happy uniformity in the definitions of the four

fundamental operations of arithmetic. The objects of these

four fundamental processes, as thus presented, will respectively

be to find the Sunn, the Difference, the Product, and the Quo-
tient of numbers.

Principles.—The operations in division are controlled by
certain necessary laws of thought to which we give the name
of principles. The following are the most important of the

principles of division:

1. The dividend and divisor are always similar numbers.

This is true of division scientifically considered, as may be

seen by regarding it as originating in subtraction or multipli-

cation. Supposing that it has its root in subtraction, and

remembering that in subtraction the two terms must be alike,

we see that this principle follows of necessity. Thus, if we

inquire how many times one number is contained in another,

I
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itis evident that these numbers must be similar. We may inquire

how many times 4 apples are contained in 8 apples, but not

how many times 4 peaches are contained in 8 apples. Neither

can we say "How many times is 4 contained in 8 apples?" for 8

apples will not contain the abstract number 4 any number of

times. The same conclusion is reached if we regard division

as originating ia multiplication. If we assume that 4 is con-

tained in 8 apples 2 apples times, it would follow that 2 apples

times 4 equals 8 apples, which is absurd.

Several recent writers take the position that a concrete number

may be divided by an abstract number, because in practice we
thus divide a concrete number into equal parts. This is a

(Subordination of science to practice, which is neither philo-

sophical nor necessary. The practical case which they thus

try to include in the theory of the subject, admits of a scientific

and simple explanation, without any modification of the funda-

mental idea of division
;
and when thus explained it becomes

apparent that the two terms are similar numbers.

2. The quotient is always an abstract number. This results

from the fundamental idea of division, whether we regard it as

originating in subtraction or multiplication. The quotient shows
how many times one number is contained in another, and one

number cannot be contained in another number yards times, or

apples times, etc., from which it follows that the quotient
must be abstract. The quotient shows how many times one

number may be subtracted from or taken out of another before

exhausting the latter, and must therefore be a number of times,

and consequently abstract. Or, i-egarding it as arising from

multiplication, the quotient is the number of times the divisor

which equals the dividend; and, as such, is a multiplier; and

must, consequently, be abstract. Suppose it were said that 2

is contained in 8 apples, "4 apples times,"—and all authors

agree as to the quotient denoting the number of times the

divisor is contained in the dividend—then it would follow that

"4 apples times" 2 are 8 apples; which is, of course, absurd.
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3. The remainder is always similar to the dividend. This

is evident, since the remainder is an undivided part of the divi-

dend. In practice, as above intimated, some of these princi-

ples seem to be violated, but if the analysis be given, it will be

seen that the violation is merely seeming, and not actual.
'

4. The following principles show the relation of the terms

in division:

1. The dividend equals the product of the divisor and quo-
tient.

2. The divisor equals the quotient of the dividend and

quotient.

3. The dividend equals the product of the divisor and quo-

tient, plus the remainder.

4. The divisor equals the dividend minus the remainder,
divided by the quotient.

5. The following principles show the result of multiplying
or dividing the terms in division:

1. Multiplying the dividend or dividing the divisor by any
number multiplies the quotient by that number.

2. Dividing the dividend or multiplying the divisor by any
number divides the quotient by that number.

3. Multiplying or dividing both divisor and dividend by the

same number does not change the quotient.

Cases.—Division is philosophically divided into two general
cases. The first case consists in finding the quotient of num-
bers independently of the method of notation used to express
them. The second case is that which grows out of the use of

the Arabic system of notation. The former case deals with

small numbers mentally, and may be called Mental Division;
the latter deals with large numbers, expressed by means of

written characters, and may be called Written Division.

The former is an independent process, belonging to pure num-

ber, and is complete in itself; the latter operates by means of

the Arabic characters, and is dependent upon the former for its

elementary quotients.

I
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Method.—In division we first find the elementary quotients

corresponding to the elementary products of the multiplication

table. These may be obtained in two diiferent ways, as will

be explained. In the second case we operate by parts, using
the elementary quotients as a basis of operation. The two

cases will be formally presented.

Case I. To find the elementary quotients of arithmetic.

The first object in division is to find the elementary quotients

corresponding to the elementary products of the multiplication

table. These quotients admit of a double origin ;
that is, they

may be derived by the method of concise subtraction, or of

reverse multiplication. Thus, if we wish to ascertain how

many times five is contained in twenty, we may find how many
livaas five can be taken out of twenty by subti-action, and this

will show how many times twenty contains five. This is the

method of subtraction, and as thus viewed, division may be

regarded as a method of concise subtraction. Again, since we
know that four times five are twenty, we can immediately
infer that twenty contains four fives, or that twenty contains

five four times. This is the method of multiplication, and as

thus viewed, division may be regarded as a method of reverse

multiplication.

Either of these two methods may be used for finding the

elementary quotients, but the method of reverse multiplication
is much more convenient in practice. The quotients are imme-

diately derived from the products of the multiplication table,

and we are thus saved the labor of forming and committing a

table of division. If, however, the elementary quotients be

derived by subtraction, it will be necessary to construct a

division table, and commit the quotients, as we do the products
in multiplication.

These elementary quotients, whether derived by multiplica-
tion or subtraction, are the result of a process of reasoning.
The process of thought may be illustrated in the problem, "Five
is contained how many times in twenty?" and is as follows:



232 THE PHILOSOPHY OF ARITHMETIC.

Five is contained as many times in twenty as twenty is times

five; but twenty \s,four times five; hence, five is contained in

twenty, four times. In ordinary language, this is abbreviated

thus: five is contained /bwr tirnes in twenty, since four times

five are twenty.

By the method of subtraction we reason thus : five is con-

tained as many times in twenty as five can be successively sub-

tracted from or taken out of twenty ; but j/^fe can be suc-

cessively subtracted from twenty, four times; hence, five is

coutained/bwr times in twenty. The ordinary form of thought

is, five is contained four times in twenty, since it can be sub-

tracted from twenty, four times. By "subtracted from," as here

used, we mean subtracted successively from until twenty is

exhausted.

Case II. To divide when the numbers are expressed in

the Arabic scale of notation. When the numbers are small,

we divide them, as we have seen, directly as wholes; when we
extend beyond the elementary quotients, the principle is to

divide by parts. The dividend is not immediately divided as

a whole, but is regarded as consisting of parts or groups; and

these are so divided that, when remainders occur, they may be

incorporated with inferior groups, and thus the whole number
be divided. This method, as in multiplication, is due to the

system of Arabic notation, and enables us to divide large num-

bers, which would be exceedingly difficult, if not impossible,

with a different system of notation.

In Written Division, or division of large numbers, two

cases are presented. First, when the divisor is so small fhat

only the elementary dividends and divisors are used
; second,

when the divisors and dividends are larger than those employed
in obtaining the elementary quotients. The methods of treat-

ing these two cases are distinguished as Short Division and

Long Division. In Short Division, the partial dividends are

not written; in Long Division, the partial dividends and other

necessary work are written.
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Illustration.—To illustrate the method of Short Division,

divide 537 by 3. Here we cannot divide the given number as

a whole, that is, d^B five hundred and thirty-seven, but by sep-

arating it into parts, we can readily divide these parts, as they

give only the elementary quotients. Thus, we first divide

five hundred, reduce the remainder of the group to tens and

incorporate with the tens group, making 23 tens, divide this as

before, and thus continue until the whole of the number hat

been divided.

When the divisor is greater than 12, the division can no

longer be performed by using the elementary dividends and

quotients. The process then becomes more difficult, although

it involves the same principles as when smaller numbers are

used. As the elementary quotients were derived from multipli-

cation, so in Long Division we determine the quotient by mul-

tiplying. We multiply the divisor by some number which

we suppose to be the quotient term, and if the product does

not exceed the partial dividend, nor the difference between the

product and partial dividend exceed the divisor, we know that

we have obtained the correct quotient figure. The method

described is so common that it need not be illustrated by a

problem.

Rule.—The mistake of using j^^wre for number is also made

in stating the rule for division. One author says,
" Find how

many times the divisor is contained in the fewest figures on

the left of the dividend," etc.; another says, "Take for the first

partial dividend the fewest figures of the given dividend,"

etc.*; another says, "Take for the first partial dividend the

least number of figures on the left that will contain the divisor,"

etc. Of course, figures will not contain the divisor; the num-

ber expressed by the figures is what is intended, and therefore

should be expressed. The error may be corrected by saying,

"Divide the number expressed by the fewest figures on the

left that will contain the divisor," or, "by the fewest terms,'*

etc
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Remark.—We write the divisor at the left of the divideud

and the quotient at the right as a matter of custom. Some pre-

fer writing the divisor at the right and placing the quotient

under the divisor. We begin at the left to divide, so that the

remainder, when one occurs, may be united with the number

of units of the next lower order, giving a new partial divi-

dend. If we attempt to divide by beginning at the right, wc
will see the advantage of the ordinary method.
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DERIVATIVE OPERATIONS OF SYNTHESIS
AND ANALYSIS.



I. Introduction.
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CHAPTER I.

INTRODUCTION TO DERIVATIVE OPERATIONS.

THE
four Fundamental Operations are the direct and imme-

diate outgrowth of the general processes of synthesis and

analysis as applied to numbers. They are called Fundamental

Operations because all the other operations involve one or

more of these, and may be regarded as being based upon them.

They are the foundation or basis upon which the others are

built up, the germ from which they are evolved, the soil out of

which they grow.

Several of the processes of arithmetic are so intimately

related to the fundamental operations that they may be

regarded as directly originating in and growing out of them.

Such are the processes of Factoring, Common Multiple, Com-

mon Divisor, etc. These processes have their roots in the

general notions of the fundamental operations, and are

evolved from them by a modification and extension of the pri-

mary analytic and synthetic processes. They are developed

by the thought process of comparison, though they have not

their basis in comparison, like the processes of Ratio, Propor-

tion, etc. Being thus derived from the fundamental operations,

they may be called the Derivative Operations of synthesis and

analysis. Let us notice the origin and nature of these deriva-

tive operations.

If two or more numbers are multiplied together, and the

result is considered with respect to its elements, we have the

idea of a Composite Number. The general process of forming

composite numbers may be called Composition. The numbers

(237)
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synthotizecl in forming a composite number are called Factors
of that number. If we form a composite number consisting
of two equal factors, we have a square ; of three equal factors,
a cube, etc., and the process is called Involution. If we find

a composite number which is a number of times each of several

numbers, or is so composed that each of them is one of its

factors, it is called a common multiple of these numbers, and
the process is known as finding- Common Multiples.

These processes are distinct from Multiplication, though
related to it. They employ multiplication and are the out-

growth of the general multiplicative idea, but pass beyond the

primary idea of multiplication. In multiplication, the main
idea is the operation of repeating one number as many times
as there are units in another to obtain a result; here the thought
is the result of the operation compared with the numbers

multiplied together. In the former case, the process is purely
synthetic ;

here comparison unites with synthesis, and employs
it for a particular object. The operation of multiplying is

assumed as a fact, and employed for the purpose of attaining
a result bearing some relation to the elements combined.

Having obtained composite numbers, and the idea of their

being composed of factors, we naturally begin to analyze them
into their elements in order to discover these factors?. This

gives rise to an analytic process, the converse of Composition.
The general process of analyzing a number into its factors is

called Factoring. If we resolve a number into several equal

factors for the purpose of seeing what factor must be repeated

two, or three, etc., times to produce the number, we have a

process known as Evolution. If we have given several num-
bers, and proceed to find a common factor of these numbers,
we have the process known as Common Divisor.

These processes, though related to Division, are clearly dis-

tinguished from it. They are an outgrowth of the general
i lea of division, but extend beyond it. In division it is the

operation of finding hvw nianv times one number is contained
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in another that is the prominent idea; here the idea is the

result considered in relation to the number or numbers

operated upon. In 'Factoring, the process of comparison

enters as an important element. Division is a process purely

analytical ; Factoring is analysis, and more
;
it is analysis plus

comparison. It has its root in Analysis, and is developed by
the thought-process of Comparison.
There are, therefore, tw^o general derivative processes, Com-

position and Factoring, each of which embraces corresponding
and opposite processes. The terms, Composition and Factor-

ing, are in practice restricted to the general processes; the

special processes are know^n by their particular names. We
have thus three pairs of derivative processes,— Composition
and Factoring, Multiples and Divisors, and Involution and

Evolution. These will be treated in successive chapters.



CHAPTER II.

COMPOSITION.

COMPOSITION
is the process of forming composite num-

bers when their factors are given. It is a general process

which contains several subordinate and special ones. When

fully analyzed, it will be seen to present several interesting

cases besides the more particular ones of Involution and Mul-

tiples. From the previous analysis it is seen that there is a

real case of Synthesis, the converse of the analytic process

of Factoring.

This new generalization, and the term I have applied to it,

will, I trust, receive the approval of mathematicians. Its

importance as a logical necessity, is seen in its relation to

Factoring. In the fundamental operations each synthetic pro-

cess has its corresponding analytic process. Thus, addition is

synthetic, subtraction is analytic ; multiplication is synthetic,

division is analytic. It follows, therefore, that there should

be a synthetic process corresponding to the analytic process

of Factoring. This process I have presented under the name
of Gomj)osition, or the process of forming composite numbers.

Cases.—There are several interesting and practical cases of

Composition, some of the most important of which are the

following:

I. To form a composite number out of any factors.

II. To form a composite number out of equal factors.

III. To form a composite number out of factors bearing any
definite relation to each other.

(240)
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TV. To form composite numbers which have oae or more

given common factors.

V. To form several or all of the composite numbers possible

out of given factors.

VI. To determine the number of composite numbers that

can be formed out of given factors.

Method of Treatment.—The method of treatment is to com-

bine these factors by multiplication in such a manner as to

attain the result desired. I will briefly state the manner of

treating each case.

Case I. To form a composite number out of any factors.

In Case I. we find the result by simply taking the product of

*.he factors. Thus the composite number formed from the fac-

tors 2, 3, and 4 equals 2x3x4, or 24.

Case II. To form a composite number out of equal fac-

tors. Case II. may be solved in the same manner as Case I., or

we may multiply a partial result by itself or by another partial

result, to obtain the entire result. Thus, if we wish to find

the composite number consisting of eight 2's, we may multi-

ply 2 by 2, giving 4, then multiply 4 by 4, giving 16, and then

multiply 16 by 16, giving 256, the number required.

Case III. To form a composite number out of factors

bearing any definite relation to each other. In this case we

may have given one factor and the relation of the other factors

to it
;
we first find the factors and then take their product.

Thus, required the number consisting of three factors, the first

being 4, the second twice the first, and the third three times the

second. Here, we first find the second factor to be 8, and the

third to be 24, and then take the product of 4, 8, and 24, which

we find to be 768.

Case IV. To form composite numbers which have one or

more given common factors. This case maybe solved by tak-

ing the given common factor, and multiplying it by any other

•^actors we choose. If it is required that the factor given be

the largest common factor of the numbers obtained, the mul-

tipliers selected must be prime to each other. To illustrate,
16
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find three numbers whose largest common factor shall be 12.

If we multiply 12 by 2, 4, and 6, we will have 24, 48, and 72,
three numbers whose common factor is 12; but since the num-
bers used as multipliers have a common factor, 12 is not the

largest factor common to these three numbers. To find three

numbers having 12 as their largest common factor, we maj
multiply 12 by 2, 3, and 5, which gives us the numbers 24, 30,
and 60, in which 12 is the largest common factor.

Case V. To form several or all of the composite numbers

possible out of given factors. In this case we may take the

factors two together, three together, etc., until they are taken
all together; or we may multiply 1 and the first factor by 1

and the second factor, the products thus obtained by 1 and the

third factor, etc., until all the factors are used. To illustrate,

form all the possible compi^site numbers out of 2, 3, 5, and 7.

We first find all the possible pro-

ducts taking them two together; operation.

then all the products taking them ^'^?^? 3x5=15
fk + .1/1.1 .1 ^ 2x5=10 3x7= 21
three together, and then the products 2x7 = 14 5 x 7=35
taking them four together, as is 2x3x5= 30
shown in the margin. Another 2x3x7=42
method, not quite so simple in 2x5x7= 70

3 X 5 X 7=. 1 0*1

thought but more convenient in 2x3x5x7=210
practice, is as follows:

Multiplying 1 and 2 by 1 and 3, will give 1, 2, 3, and all the

composite numbers that can be formed out of 2 and 3; these

multiplied

by 1 and 5 operation.

will give 1,
J ^

2, 3, 5, and

all the com-

posite num- , n „ ^ „ ,„ ,

I .. .
1 2 3 5 6 10 15 30

bers that
j ^

can be
formed out

12 3 6

1 5

1 2 3 5 6 10 15 30 7 14 21 42 35 70 105 210

of 2, 3, and 5
;
these multiplied by 1 and 7 will give 1, 2, 3, 5,



COMPOSITION. 243

X, and all the composite numbers that can be formed out of 2,

3, 5, and 1. Omitting 1, 2, 3, 5, and 7 in the last result, and

we have all the composite numbers that can be formed out of

2, 3, 5, and 7.

If some of the given factors are alike, we have an interesting

modification of this case. Thus, suppose we wish to find the

composite numbers which

can be composed out of 2, 2,
operation.

2, 3, and 3. In this problem J ?
q

^

since 2 is used three times
, ,, . , . 1 2 3 4 6 8 9 12 18 24 36 72we may make the first series

1, 2, 2'\ and 2', or 1, 2, 4, and 8
;
and since 3 is used twice, the

second series will be 1, 3, and 3^ or 1, 3, and 9
;
and the

products of these, omitting 1, 2, and 3, will be the composite
numbers required.

Case YI. To determine the nuviber of composite num-
bers that can be formed out of given factors. We may solve

this case by increasing the number of times each factor is used

by unity, take the product of the results and diminish it by
the number of different factors used increased by one. The
reason for this method may be readily shown. Suppose we
wish to find how many composite numbers can be formed with

three 2's and two 3's.

Here we see that 2 used three times as a factor gives with 1

a series of four terms
;
and 3 used twice as a factor gives

with 1 a series of three terms; hence the product will give a

series of 4x3 or 12 terms, and omitting the unit and 2 and 3,

we have nine terms. The inference from this solution will

give the method stated above.
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FACTORING.

FACTORINGr
is the process of finding the factors of com.

posite numbers. It is the reverse of Composition, In

Composition we have given the factors to find the number; in

Factoring we have given the number to find the factors. Com-

position is a synthetic process ;
it proceeds from the parts by-

multiplication to the whole. Factoring is an analytic process ;

it proceeds from the whole by division to the parts.

A Factor, as now generally presented in arithmetic, is

regarded as a divisor of a number, rather than a maker or pro-
ducer of the number. This I regard as an error. The origin
of the word, facio, I make, indicates its original meaning to be

a maker of a composite number. The fact of a Factor
of a number being a divisor of it is a derivative idea, re-

sulting from the primary conception of its entering into the

composition of the number. This primary idea of the office of

a Factor is the one that should be primarily presented to pupils,
rather than the secondary or derivative idea. We should

define according to the fundamental, rather than the derivative

office. To do otherwise is to invert the logical relation of ideas,

and must, as I have known it, tend to confusion. Thus taught,
it is seen that the proposition, a factor of a number is a divi-

sor of the number, is an immediate inference, which would have
to be inverted if the secondary office of a factor is made the

fundamental idea.

(244)

1



FACTORING. 245

Cases.—Factoring presents several cases analogous to those

of Composition. Some of the principal ones are the following,

which, it will be noticed, are the correlatives of those given
under Composition,

I. To resolve a number into its prime factors.

IL To resolve a number into equal factors,

III. To resolve a number into factors bearing a certain rela-

tion to each other.

lY. To find the divisors common to two or more num-
bers.

V. To find all the factors or divisors of a number.

VI. To find the number of divisors of a number.

Method.—The general method of treatment is to resolve the

number or numbers into their prime factors, and then combine

these factors when necessary so as to give the required result.

The prime factors of a number are found by division, and con-

sequently it is convenient to know before trial what numbers

are composite and can be factored, and the conditions of their

divisibility. Hence, the subject of Factoring gives rise to the

investigation of the methods of determining prime and com-

posite numbers, and the conditions of the divisibil-ity of com-

posite numbers. This subject will be treated under the head

of Prime and Composite Numbers. The method of treating

each of the above named cases of factoring will be briefly stated.

Case I. To resolve a number into its prime factors. In

Case I. we divide the number by any prime number greater

than 1 which will exactly divide it; divide the quotient,

if composite, in the same manner; and thus continue until the

quotient is prime. The divisors and the last quotient will be

the prime factors required.

Thus, suppose we have given 105 to find its prime
factors. Dividing 105 by the prime factor 3, and 3)105

the quotient 35 by 5, we see that 105 is composed 5)35

of the three factors 3, 5, and 7, and since these are 7

prime numbers, its prime factors are 3, 5, and 7.
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Case II. Tu resolve a number into equal factors. In Case

II. we resolve the number into its prime factors and then com-

bine by multiplication one from each set of two equal factors,

when we wish one of the two equal factors of the number
;
one

from each set of three equal factors when we wish one of

three equal factors, etc.

Thus, suppose we wish to find the (2x2x2x
three equal factors of 216, or one of its (3x3x3
three equal factors. We first resolve 2x3=6
216 into its prime factors, finding 216=^2x2x2x3x3x3.
Since there are three 2's, one of the three equal factors will

contain 2; and since there are three 3's, one of the three equal
factors will contain 3

;
hence one of the three equal factors is

2x3, or 6.

Case III. To resolve a number into factors bearing a cer-

tain relation to each other. In this case we may divide the

given number by the product of the numbers representing the

relation of the other factors to the smallest factor, then resolve

the quotient into equal factors, and then multiply this equal
factor by the numbers indicating the relation of the other fac-

tors to it.

Thus, resolve 384 into three factors, such that the second
shall be twice the first and the third three times the first.

Since the second factor equals 2 times the

first and the third equals 3 times the first, 6)384

the product of the factors will equal 2x3, 64=4 x 4x4
or 6 times the first factor, used three times :

" ^ *~^

hence if we divide 384 by 6, the quotient,

64, will be the product of the smallest factor used three times
;

therefore, if we resolve 64 into three equal factors, one of these

factors will be the smallest of the three factors required. One
of the three equal factors of 64, found by the previous case, is

4
; hence, the smallest factor is 4, the second is 4 X 2 or 8, and

the third is 4x3 or 12.

Case IV. To find the divisors common to two or more
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numbers lu this case we resolve the numbers into their

prime factors, and the common prime factors and all the num-
bers which we can form by combining them will be all the

common divisors.

Thus, find the divisors common operation.

to 108 and 144. Resolving the 108=2^X3^
numbers into their prime factors,

144=2 x3
we find the common factors to be

^°"^-
factor=2^x3*

2''X3''; hence, 1, 2, 4, 3, 9, and
j 2 4

all the possible products arising jongeio^ioqc"
from their combination, will be all

the divisors of 108 and 144.

Case Y. To find all the factors or divisors of a number
In this case we resolve the number into its prime factors, form

a series consisting of 1 and the successive powers of one fac-

tor, and under this write 1 and the successive powers of an-

other factor, and take the products of the terms of this series,

etc. Thus, find all the diiferent divisors of 108.

The factors of 108

are two 2's and three operation.

3's. Since 3 is a factor J ^^^^
X 2 x 3 x 3 x 3

1 3 9 2t
3 times, 1, 3, 3

,
3

,
is 124

the first series of divis-
1 3 9 27 2 6 18 54 4 12 36 108

ors
;
and since 2 is a

factor twice, 1, 2, 2^ is the second series of divisors; and the

products of the terms of these two series will 'give the prime
factors and all possible products of them

;
and therefore, all the

divisors of the number.

Case YI. To find the number of divisors of a number.

In this case we resolve the number into its prime factors, in-

crease the number of times each factor is used by 1, and take

the product of the results. Thus, find the number of divisors

of 108.
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Factoring, we find 108
. equals operation.

2'X3^ Now it is evident that 1
'

108=2^x3'

with the first and second powers of (2+l)x (3+ l)=12

2 will give a series of three divisors; and 1 with the first,

second and third powers of 3, will give a series offour divis-

ors; hence their products will give a series of three times

four, or 12 divisors.



CHAPTER IV.

THE GREATEST COMMON DIVISOR.

A DIVISOR of a number is a number which will exactly
divide it. A number is said to exactly divide another

when it is contained in it a whole number of times without a

remainder. A Common Divisor of two or more numbers is a

divisor common to all of them. The Greatest Common Divi-

sor of several numbers is the greatest divisor common to all

of them. By using the word factor to denote an exact integral

divisor, we may define as follows:

A Divisor of a number is a factor of the number. A Com-
mon Divisor of two or more numbers is a factor common to

all of them. The Greatest Common Divisor of several num-

bers is the greatest factor common to all of them. These defi-

nitions employ the tevm factor with a derivative signification.

A factor is primarily one of the makers of a number, entering
into its composition multiplicatively. From this it follows,

however, that a factor is an integral divisor of a number, and

as such, it may be conveniently and legitimately used in defin-

ing a common divisor.

In the subject of greatest common divisor, the term "divisor"

is used in a sense somewhat special. It signifies an exact

divisor—a number which is contained a whole number of

times without a remainder. The word measure was formerly
used instead of divisor, and is in some respects preferable to

divisor. A common divisor of several numbers is appropri-

ately called their common measure, since it is a common unit

(249)



250 THE PHILOSOPHY OF ARITHMETIC.

of measure of those numbers. The term measure, in this sense,

originated in Geometry, where a line, surface, or volume which

is contained in a given line, surface, or volume, is called the

unit of measure of the quantity. In arithmetic, the term

divisor is generally preferred.

Cases.—There are two general cases of greatest common

divisor, growing out of a diflerence in the method of treatment

adapted to the problems. When numbers are readily factored,

we employ one method of operation ;
when they are not readily

factored, we are obliged to employ another method. This dual

division of the subject into two cases is thus seen to be founded,

not upon any distinctions in the idea of the subject, but upon
the method of operation adapted to the numbers given. These

two cases are formally stated as follows:

I. To find the greatest common divisor when the numbers

are readily factored.

II. To find the greatest common divisor when the numbers

are not readily factored.

T/-eatment.—The general method of treatment in the first

case is to analyze the numbers into their factors, and take the

product of the common factors. In the second case the num-

bers are operated upon in such a manner as to remove all the

factors not common, and thus cause the greatest common divi-

sor to appear. These two methods will be made clear by their

application.

Case I. To find the greatest common divisor when the

numbers are readily factored.

This case may be solved by two distinct methods. The first

method consists in writing the numbers one beside another,

and finding all their common factors bv division, and then tak-

ing the product of these common factors. To illustrate, re-

quired the greatest common divisor of 42, 84, and 126.

\si Method.—We place the numbers one beside another

as in the margin. Dividing by 2, we see that 2 is a common
factor of the numbers. Dividing the quotients by 3, we see
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that 3 is a common factor of the operation.

numbers. Dividing these quotients
2)42 84 126

by 7, we see that 1 is a common 3)2 1 42 63

factor of the numbers; and since 7) 1 14 21

the final quotients 1, 2, and 3 are 12 3

prime to each other, 2, 3, and 7 are Cr. C. D.=2x 3x7=42

all the common factors of the given numbers. Hence 2x3x7
or 42, is the greatest common divisor required. This method,

so far as I can learn, was published first by the author of

this work, iu 18.55. It is now in several difierent text-books.

The second method consists in resolving the numbers into

their prime factors, and taking the product of all the common
factors. To illustrate, take the problem already solved by the

first method.

2d 3Iethod.—Resolving the num- operation.

bers into their prime factors, we 42=2x3x7
find that 2, 3, and 7, are factors 84=2x2x3x7

]26='^x3x3x7common to the three numbers: p, r^" r^—o ^qv^^t— ^o
1 1 . , I

• 1 • ir. • ur. <-'. -L*.
—^XoX I

— 4.i

hence their product, which is 42, is

a common divisor of the numbers; and, since these are all

the common factors, 42 is the greatest common divisor.

Case II. To find the greatest common divisor when the

numbers are not readily factored. The second case may be

solved by a process which may be entitled the method of suc-

cessive division. It consists in dividing the greater number

by the less, the less number by the remainder, etc., until the

division terminates, the last divisor being the greatest common

divisor. To illustrate, suppose it be required to find the great-

est common divisor of 32 and 56. ^^^„ ^n^T^^,operation.
Method.—We first divide 56 by 32, then 32)56(1

divide the divisor, 32, by the remainder, 32

24; then divide the divisor, 24, by the 24)32(1

remainder, 8, and find there is no remain- 2£^

der; then is 8 the greatest common divi- 8)24(3

8or of 32 and 56. ^J_
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This method is applicable to all numbers, and may therefore

be distinguished from the methods of the previous case by

naming it the general method, those being

adapted to only a special case. A more conveni- operation.

ent method of expressing the successive divis- „ , .^.^ ,

ion, and one w^hich I recommend for general ^

adoption, is that represented in the margin. It
I24!

is observed in this method that the quotients

are all written in one column at the right, and that the num-

bers in the other columns become divisors and dividends in

turn.

Explanation.
—In the explanation of the rationale of the

general method of successive division, there are two distinct

conceptions of the nature of the process. These two methods

may, for convenience in this discussion, be entitled the Old and

the New methods of explanation. By the Old Method of

explanation I mean the one generally given in the text-books

on arithmetic and algebra. The New Method is the one which

is found in my own mathematical works. I will present each,

pointing out the difference between them. Both methods are

based upon the following general principles of common
divisor:

1. A divisor of a number is a divisor of any multiple of
that number.

2. A common divisor of two numbers is a divisor of their

sum, and also of their difference.

The Old Method of explaining the process of successive

division is briefly stated in the following propositions:

1. Any remainder which exactly divides the previous divi-

sor, is a common divisor of the two given quantities.

2. The greatest common divisor will divide each remainder,
and cannot be greater than any remainder.

3. Therefore, any remainder which exactly divides the

previous divisor is the greatest common divisor.

Whatever the special form of the old method of explanation,
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and we find it considerably varied by different authors, it

involves, more or less distinctly, the principles just stated

The New Method of conceiving of the nature of the process
and explaining it, may be presented in the following princi-

ples:

1. Each remainder is a number of times the greatest com-

mon divisor.

2. A remainder cannot exactly divide the previous divisor

unless such remainder is once the greatest common divisor.

3. Hence, the remainder which, exactly divides the previous

divisor, is once the greatest common divisor.

The first of these principles is evident from the considera-

tion that a number of times the greatest common divisor, sub-

tracted from another number of times the greatest common

divisor, leaves & number of times the greatest common divisor.

The second of these principles becomes evident from the

consideration that of any remainder and the previous divisor,

the numbers denoting how many times the greatest common
divisor is contained in each are prime to each other ; hence,
one cannot divide the other unless one of these numbers is a

unit, or the remainder becomes once the greatest common
divisor.

These principles may be readily seen by factoring the two
numbers and then dividing. Thus, in the problem already

given, knowing the greatest com-

mon divisor to be 8, we may re- operation.

solve 32 and 56 into a number of 4x^)';x8(l^ 4x8
times 8, and then divide. Observ-

-^
—-r

ing the operations in this factored 3x8
form, we see that each remainder Tv^*^ v S*'^

is a number of times the greatest 3x8
common divisor, and that the fac-

tors 7 and 4, and also 4 and 3, are respectively ^rme to each

other; and also that the division terminates when we reach a

divisor which is once the greatest common divisor, and that it
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cannot terminate until we come to once the greatest common

divisor.

In arithmetic I find it simpler to pre- operation.

sent this New Method, in a manner 32).56(1

slightly varied from the above, preserving .—
its spirit, but slightly changing the form Zxj6Z{L

to adapt it more fully to the comprehen- —
sion of younger minds. To illustrate, let '^oi

it be required to find the greatest common —
divisor of 32 and 56. Dividing as previously explained, we
have tlie work in the margin. The explanation, showing that

this process will give the greatest common divisor, is as fol-

lows:

1st. The last remainder, 8, is a number of times the great-
est rontinon divisor. For, since 32 and 56 are each a number
of times the G*. C. D., their difference, 24, is a number of times

the G. C. D.; and since 24 and 32 are each a number of times

the G. C. D., their difference, 8, is also a number of times the

G. C. D.

2d. The last remainder, 8, is once the greatest common
divisor. For, since 8 divides 24, it will divide 24-f 8, or 32;
and since it divides 32 and 24, it will divide 24+32, or 56;
and now since 8 divides 32 and 56, and is a number of times

the G. C. I)., and since once the G. C. D is the greatest num-
ber thiit will divide 32 and 56, therefore 8 is once the G. C. D.

Til s x'cond method of conceiving the subject is believed to

be ilii' true one. It is simpler than the old method, and
readies the root of the matter, which the other does not. It

look> (I'lwii into the process and sees the nature of the remain-

der> iiid tlicir relation to each other. All the remainders are

see i iic a number of times the greatest common divisor,
each iM-iii«r a less and less number of times the greatest com-
mon -li visor; and consequently, if the division be continued far

enoiiiih, wo will at length arrive ^t once the greatest common
divisor. The object of dividing is thus seen to be a search for
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a smaller number of times the g-reatcst common divisor, know-

ing that eventually we will arrive at once this factor, which will

be indicated by the termination of the division. The experience

of the class-room, especially in the sudden revelation of the

philosophy of the division to those who thought they had a

clear idea of the subject by the old method, has frequently

demonstrated the superiority of the method now suggested.

It is also readily seen, from this conception of the subject, that

the secret of the method of finding the greatest common divi-

sor is not in the division of the numbers, but in the subtrac-

tion of them—knowing that w^hen we subtract one number of

times a factor from another number of times the factor, the

remainder is a less number of times the factor, and that the

object is to continue the subtraction until w-e reach once the

required factor.

Abbreviation.—This view of the subject leads-us to discover

a shorter process of obtaining the greatest common divisor

than that of the ordinary method of dividing.

Thus, suppose we wish to find the greatest operation.

common divisor of 32 and 116. If we divide in 32 116 4

the ordinary way, we will find that it requires five -^
^^^

divisions and five quotients. If we take 4 times

82 and subtract 116 from it, we get a smaller re-

mainder than if we subtract 3 times 32 from 116,

and hence are nearer once the greatest common divisor. If we

then subtract 32 from 3 times 12, we obtain a smaller remainder

than if we subtract 2 times 12 from 32, and hence are nearer

once the greatest common divisor, etc. This latter method

requires but three multiplications and subtractions, and hence

saves two-fifths of the work. In many problems nearly one-

half the labor is saved by this method.

The method of conceiving and explaining the greatest com-

mon divisor here given, is perhaps most clearly exhibited by
the use of general symbols. Thus, let A and B be any two

numbers, of which A is the greater; let c be their greatest

12 3

12 8
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common divisor, and suppose A=ac and B=bc] then dividing

the greater by the less, the smaller by the remainder, and thus

continuing, we have the operation in

the margin, which may be explained b.c.) a. c{q

as follows: -. , ,

1st. Each remainder is a number ^ ^'

of times the G. G. D. This is shown r.c)
h.^

c{q'

by the division, since each remainder ^^ '

^

is a number of times c, the first being
^ ""^^ ^^~^ '^

(a—bq) times c, which we indicate ^'-c)
f-

<^(9

, ^ . r'q".c
by r times c, etc. —±—

c. A ^ , ,1 {r-r'q")c=r".c
2d. A remainder cannot exactly ^^^^ ^ -^^^

divide the previous divisor unless

such remainder is once the G. G. D. To prove this it must

be shown that b and r are prime to each other; also, that r and

r' are prime to each other, etc. Now, if b and r are not prime
to each other, they have a common factor, and hence, r-\-bq or

a contains this factor of b; but a and b are prime to each

other, since c is the greatest common factor of a and b ; there-

fore, b and r are prime to each other. In the same way it may
be shown that r and r' are prime to each other, r' arid r", etc.

Hence, since of two numbers prime to each other one cannot

contain the other unless the latter is a unit, a remainder can-

not exactly divide the previous divisor unless such remainder

is once the G. C. D.

3d. Hence, the remainder which does exactly divide the pre-

vious divisor is once the Greatest Gommon Divisor.



CHAPTER Y.

THE LEAST COMMON MULTIPLE.

A MULTIPLE of a number is one or more times the num-

ber. A. Common Multiple of two or more numbers is a

number which is a multiple of each of them. The Least

Common Multiple of several numbers is the least number
which is a multiple of each of them.

This conception of a multiple is that it is a number of timea

some number. It regards the subject as a special case of form-

ing composite numbers. A common multiple is a synthesis of

all the different factors of two or more numbers, giving rise to

a number which is one or more times each of those numbers.

The relation of the subject to multiplication is also seen in the

term multiple itself. The primary idea is, what number is one

or more times each of several numbers ?

This view of a multiple differs from that usually presented

by our writers of text-books. The usual definition is—A mul-

tiple of a number is a number which exactly contains it. This

puts containing as the primary idea, and makes the subject

seem to originate in division rather than in multiplication.

Indeed, some have gone so far in this direction as to change
the name from multiple to dividend, calling it a common divi-

dend instead of a common multiple. That this idea is incor-

rect is evident both from the term multiple, and the nature of

the subject. There can be no question of the subject having
its origin in multiplication, and it should certainly be defined

in accordance with this view.
17

( 257 )
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It will be observed that the subject of Greatest Common
Divisor is placed before that of Least Common Multiple; that

is, a special case of Factoring before a special case of Compo-

sition, thus reversing the general order of synthesis before

analysis. The reason for this is that Common Multiple is a

synthesis of factors, and in some numbers these factors are

most conveniently found by the method of greatest common

divisor. This order is thus a matter of convenience in per-

f(.n ining the operation, and not that of logical relation.

Ca.-«'x.—There are two general cases of Least Common

Multiple, as of Greatest Common Divisor. This distinction of

cases, as in the corresponding analytic process, is not founded

in a variation of the general idea, but rather in the practical

ease or difficulty of finding the factors of the numbers. When
the numbers are readily factored we employ one method of

operation ;
when they are not easily factored we employ an-

other method. These two cases are formally stated as follows:

I. To find the least common multiple when the numbers are

readily factored.

II. To find the least common multiple when the numbers

are not readily factored.

Treatment.—The general method of treatment in the first

case is to resolve the numbers into their di8"erent factors

by the ordinary method of factoring, and take the product of

all the diS'erent factors. In the second case, the different fac-

tors are found by the process of determining the greatest com-

mon divisor, and are then combined as before.

Case I. To Jin d the least common multiple when the num-
bers are readily factored. This case may be solved by two

distinct methods. The first method consists in resolving the

numbers into their prime factors, and then taking the product
of all the different prime factors, using each factor the greatest

number of times it appears in either number. Thus, required
the least common multiple of 20, 30, and 70.

AVe first resolve the numbers into their prime factors
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Sinco the factors of 20 are 2x2x5, the multiple must con-

tain the factors 2, 2, and 5
;

,, „ ^ » „^ OPERATION.
Since the factors ot 30 are

'>0='>x2x5
2, 3, and 5, it must contain . 30=2x3x5
the factors 2, 3, and 5; and 70=2x5x1
for a similar reason it must L. C. M.= 2x 2x3x 5x Y=420.

contain the factors 2, 5, and

7
; hence, the least common multiple of 20, 30, and 70 must

contain the factors 2, 2, 3, 5, and 7, and no others; and

their product, which is 420, is the least common multiple

required.

The second method consists in writing the numbers one

beside another and finding all the different factors by division,

and then taking the product of these factors. To illustrate,

find the least common multiple of 24, 30, and 70.

Placing the numbers beside one another, and dividing by 2,

we find that 2 is a factor of all the numbers
;

it is therefore a

factor of the least common multiple. Divid-

ing the quotients by 3, we see that 3 is a factor operation.

2)24 30 70
of some of the numbers: it is therefore a factor "'-^^ '.

3)12 15 35
of the least common multiple. Continuing to i 1_

divide, we find all the different factors of the ^)_A_^_^
numbers to be 2, 3, 4, 5, and 7

; hence, their pro-

duct, which is 840, will be the least common multiple required.

Case II. To find the least common multiple when the num-

bers are not readily factored. The second case is solved by a

method which may be called the method of greatest common

divisor. By it, when there are two numbers, we find the

greatest common divisor of the two numbers.and multiply one

of them by the quotient of the other divided by their greatest

common divisor. When there are more than two numbers,

we find the least common multiple of two of the numbers, and

then of this multiple and the third number, etc. To illustrate,

required the least common multiple of 187 and 221.
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We first find the greatest common divisor to be IT. Now,
the least common multiple of

operation.
18T and 221 must be composed j^g-j 221

of all the factors of 18t, and all 170 187

34

34

1

the factors of 221 not contained 17

in 187. If we divide 221 by

the greatest common divisor, we
j^ ^ M=187x — =2431

shall obtain the factors of 221 not 11

belonging to 187
; hence, the least common multiple is equal

to 187x221^17, which we find is 2431.

Another statement for this method is, divide the product of
the two numbers by their greatest common divisor. The value

of this method may be seen by attempting to find the least

common multiple of 1127053 and 2264159 by each method.

This method is very clearly
,.,.-,, , p ,, . OPERATION.

exhibited by the following gen- A=aycc
eral explanation. Let -4 and ^ B=bxc
be any two quantities, and let L. C. M.=ax6xc= —X5
their greatest common divisor be ^

represented by c, and the other factors by a and b, respectively ;

then we shall have the L. C. M.=ax6xc, Case I.; but 6Xc=
A A

B, and a= -
: hence, L. C. M.= - X B.

'

c c



CHAPTER VI.

INVOLUTION.

INVOLUTION
is the process of forming composite numbers

by the synthesis of equal factors. It is, as has been pre-

viously explained, a special case of Composition. If in the

general synthesis of factors, we fix upon the condition that

all the factors are to be equal, the process is called Involution,

and the composite number formed is called a Power of that

factor.

Involution may, therefore, be defined as the process of rais-

ing numbers to required powers. The power of a number is

the product obtained by using the number as a factor any num-

ber of times. The different powers of a number are called,

respectively, the square, the cube, the fourth power, etc. The

square of a number is the product obtained by using the num-

ber as a factor twice. The cube of a number is the product

obtained by using the number as a factor three times. These

definitions, which are beginning to be adopted by authors, are

regarded as improvements upon those framed from the usual

conception of the subject.

Symbol.—The power of a quantity is indicated by a figure

written at the right, and a little above the quantity. Thus,

the third power of 5 is indicated by 51 The earlier writers on

mathematics denoted the powers of numbers by an abbrevia-

tion of the name of the power. Harriot, an eminent math-

ematician of the 16th century, repeated the quantity to indi-

cate the power; thus, for a fourth power he wrote aaaa. The

present convenient system of exponents was introduced by
( 261 )
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Descartes, an eminent philosopher and mathematician cele-

brated for his "
cogito, ergo sum," and the invention of the

method of Analytical Geometry.
Cases.—To raise a number to each dififerent power is a vari-

ation of the general idea, and might be regarded as presenting
distinct cases; but the methods of operation in each one of these

cases are so similar, that they may all be considered under

one head. In raising a number to a given power, we may
have two objects in view:—first, merely to find the required

power; and second, to ascertain the law by which the different

parts of a number, as expressed in the Arabic system, are

involved. These two objects require different methods of pro-

cedure, and upon this difference of method we may found

two distinct cases of involution. In practice, it is convenient

to divide the second case into the consideration of the square
and the cube, thus making three cases. These cases, formally

expressed, are as follows:

I. To raise a number to any required power.
II. To raise a number to the second power, and ascertain the

saw by which the power is formed.

III. To raise a number to the third power, and ascertain the

law by which the power is formed.

Treatment.—The general method of treatment is to involve

the factors by multiplication. In the first case a variation

occurs for the purpose of abbreviation, giving two methods.

In the second and third cases the number is resolved into parts

and involved in two different ways, giving also two distinct

methods. The treatment of both of these cases will now
be presented.

Case I. To raise a number to any required operation.

power. This case may be solved by forming a 4

product by using the number as a factor as many _L
times as there are units in the index of the power.

'•"

Thus, to find the third power of 4, we multiply —
4 by 4 giving 16, and then multiply 16 by 4
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9

INVOLUTION. 2G3

ffiving- 64, which is the cube of 4, since the number is used as

a factor three times.

In all powers higher than the cube, we may abbreviate the

process by taking the product of one power by another. Thus,

in finding the 8th power of 2, we may first find

the square of 2, which is 4, then multiply 4,

the square, by itself, obtaining 16, the 4th ^

power of 2, and then multiply 16, the 4th power,
-

.-

by itself, giving 256, the 8th power of 2. This 4

method may be applied to all powers higher Jq
than the third, and is much more convenient in ig

practice. Thus, in finding the 5th power, we 256

may take the product of the 2d and 3d powers,

or the product of the square by the square by the first power;
in finding the 6th power, we may cube the 2d power, or square

the 3d power, or multiply the 4th power by the square, etc.

Case II. Squaring Numhers and finding the law. This

case may be solved by two distinct methods. The first

consists in separating the number into its elements of units,

tens, etc., and multiplying as in algebra so as to exhibit the

law by which the parts are involved. The second method per-

forms the process of involution as determined by the building

up of a figure in geometry. These two methods may be dis-

tinguished as the algebraic and geometric, or the analytic and

synthetic methods. The ultimate object of these methods

is to derive a law of involution by which we may be able to

derive methods of evolution. These two methods apply both to

the squaring and cubing of numbers. The synthetic method

cannot be extended beyond the cubing of numbers; the analytic

method is general and will apply to all powers, but is of no

practical use in arithmetic beyond the cube. We will, there-

fore, apply these two methods only to the squaring and cubing
of numbers.

Analytic Method.—By the Analytic Method of squaring

numbers, we separate the number into its units, tens, etc., and
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OPERATION.
20+ 5

20+ 5

5x20+ 5'

20^+5x20

20^+2(5 x20)+5'

keep these elements distinct in the iavolution of the number,
so that the law of the process becomes apparent. To illustrate,

find the square of 25.

Twenty-five equals 20 + 5, or 2 tens

and 5 units. Writing the number as

in the margin, and multiplying by 5

and by 20, and taking the sum of these

products, we have 20'+ 2 (5x20)+5l
From this we see that the square of a

number consisting of tens and units, equals the tens^+2 times

tensx units-\-units^.

If we involve in the same manner a number consisting of

hundreds, tens, and units, we shall find the following law:

The square of a number consisting of hundreds, tens, and units

equals hund?^eds'+2 x hundreds x tens-{-tens^-\-2 X {hundreds-\-

tens) x unils-\-units\

Synthetic Method.—The Synthetic Method of solving the

same problem is as follows: Let the line AB represent a

length of 20 units, and BH, 5 units.

Upon AB construct a square: the

area will be 20'^ 400 square units.

On the two sides DC and BC con-

struct rectangles each 20 units long
and 5 broad, the area of which will be

5X20=100, and the area of both will

be 2x100^200 square units. Now
add the little square on CG, whose

area is 5'= 25 square units, and the sura of the difi'erent areas,

400+200+ 25 = 625, is the area of a square whose side is

25.

When there are three figures, after completing the second

square as above, we must make additions to it as we did to the

first square. When there are four figures there are three addi-

tions, etc.

Case III. Cubing Numbers to find the law. This case

F K

D
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may also be solved bj two distinct methods, as in squaring

numbers, which we distinguish as the analytic and synthetic

methods. The former involves the number by the method of

algebra; the latter by the principles of geometry.
Analytic Method.—By the Analytic Method we resolve the

number into its elements of units, tens, etc., and keep it in

this form as we perform the process of involution, that we

may exhibit the law by which the elements of a number enter

into its cube. To illustrate, find the third power of 25.

Resolving the number opkuation.
into its units and tens 25'^20'+2(5x 20)+ 5'

and squaring as above, we 20-J-5

have 20''+2(5x20)+5l 5 x 20H2x S'^X 20+ 5'

Multiplying the square by 20'+2 x 5x 20-+5'x 20

5 and then by 20, and 20^3x5x20^+3x5-^x20+5'

taking the sum of the products, we have the cube of 25, as

given in the margin. Examining the result, we see that the

cube of a number of two digits equals tens'+3Xte?i8'^XunzY6+

^Xtensy.units^+unitH^.

Cubing a number of three digits, we obtain the following law :

The cube of a number of three digits equals hundreds^+Zy.

hundreds^ X tens + 3 X hundreds Xtens''-\-ten's^+Z'X.(hundreds+

tensf Xunits-hS X(hundreds+tens)Xunits~+units^.
Synthetic Method.—By the Synthetic Method we use a

cube to determine the process of involution. To illustrate, let

us find the cube of 45 by this method.

Let A, Fig. 1, represent a cube whose sides are 40 units; its

contents will be 40^^64000. We then wish to increase the

size of this cube so that its sides will be 45 units. To in-

ci-ease its dimensions by 5 units, we must add first the three

rectangular slabs, B, C, D, Fig. 2; 2d, the three corner pieces,

E, F, G, Fig. 3; 3d, the little cube H, Fig. 4. The three slabs

B, C, D, are 40 units long and wide and 5 units thick; hence,

their contents are 40'^X5X3=24000; the contents of the cor-

ner pieces, E, F, G, Fig. 3, whose length is 40 and breadth

12
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Fia Fig. 2.

and thickness 5, equal 40 X 5'^ X 3^3000, and the contents

of the little cube

H, rig. 4, equal

5^=125; hence the

contents of the
cube represented by

Fig. 4 are 64000+

24000 + 3000+125=
91125. Therefore,

the cube of 45, etc.

Here we see that

40^ is the cube of
the tens; 40^x5x3
is tena^x units xZ;
40x5^x3is3xi{e/is

X units''; and 5^ is

units^; hence we have, as before, the

cube of a number of tens and units

equals tens^-\-^ x tens^ X units-\-^ x tens

X u??.iY6'"+units\

When there are three figures in the

number, we complete the second cube

as above, and then make additions and complete the third in

the same manner. If there are still some figures, and no more

blocks to make additions, let the first cube represent the cube

already found, and then proceed as at first.

OPERATION.
40^=64000

40''X 5x3= 24000
40X5^X3= 3000

5'= 125

Hence, 45^= =91125
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EVOLUTION.

EVOLUTION
is the process of finding one of the several

equal factors of a number. It is an analytic process, the

converse of the process of Involution. Involution is a synthe-

sis of equal factors
;
Evolution is an analysis into equal factors.

The former is a special case of composition; the latter is a

special case of factoring. One finds its origin in multiplica-

tion; the other in division. Both are contained in the primary

synthetic and analytic ideas, and are the result of pushing for-

ward and specializing those notions.

Any one of the several equal factors of a number is called

a root of that number. The degree of a root depends upon the

number of equal factors. The square root of a number is one

of its two equal factors. The cube root of a number is one of

its three equal factors, etc. These definitions are regarded as

an improvement upon the old ones, that the square root of a

number is a number which multiplied by itself will produce

the number, and similarly for the other roots. Evolution may
also be defined as the process of finding any required root of

a number.

Symbol.—The Symbol of Evolution is ^, called the radical

sign. This sign was introduced by Stifelius, a German math-

ematician of the 15th century. It is a modification of the

letter r, the initial of radix, or root. Formerly, the letter r

was written before the quantity whose root was to be extracted,

and this gradually assumed its present form, y/.

To indicate the degree of the root to be extracted, a figure

(267)
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is prefixed to the radical sign; thus, ^, ^, </, etc., denote

respectively the square root, cube root, fourth root, etc. This

figure is called the index of the root, because it indicates the

root required. The index of the square root is usually omitted,

perhaps because the symbol was applied to the square root for

some time before its use was extended to the higher roots.

The roots of numbers are also indicated by fractional expo-

nents; as 4^% 8^, etc.

Case.s.—Each different root might be regarded as constitut-

ing a distinct case, but it is most convenient to treat the sub-

ject under three general cases, as in Involution. These three

cases correspond to those of Involution, and may be formally

expressed as follows:

I. To extract any root of a number when it can be conven-

iently resolved into its prime factors.

II. To extract the square root of a number when it can not

be conveniently factored.

III. To extract the cube root of a number when it can not

be conveniently factored.

Treatment.—The general method of treatment is to analyze

the number into the parts required. In the first case, we ana-

lyze the number into its prime factors, and then make a syn-

thesis of some of these factors. In the second and third cases,

we separate the number into parts by several distinct methods,

corresponding to those of Involution.

Case I. To extract any root when the number can be readily

factored. This case is solved by resolving the number into

its prime factors, and then involving the factors so as to obtain

the equal factor required. For the square root we take the

product of each of the two equal factors
;
for the cube root we

take the product of each of thQ three equal factors, etc.

Thus, to find the square root of

1225, we resolve the number into its operation.

prime factors, 5, 5, 7, 1, and take the
^^ 7. —5 V, -7-^35

product of one of the two 5's and one of

the two 7 's, giving us 5 X 7, or 35.
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To find the cube root of 1728 ^operation.
we resolve the number into its pj^^^rl?^ jiiV^

^^ *

Uu. rt.—ox4=la
prime factors, as shown m the

margin, and take the product of one of the three 3's, and one

of the three 4's, giving 3x4, or 12. In a similar manner we

find any root of any perfect power that can be resolved into

its prime factors.

Case II. To extract the Square Root of a number. The

Square Root of a number is one of the two equal factors of the

number. The square root of a number may also be defined to

be a number which, used as a factor twice, will produce the

given number. The former definition is somewhat analytic;

the process of thought is from the number to its elements. The

latter is rather synthetic ;
the process of thought is from the

elements to the number.

The method of extracting the square root of a number con-

sists in analyzing the number into two equal multiplicative

parts. This is done by first finding the highest term of the

root, taking its square out of the number, and using it, accord-

ing to the laws of involution, to determine the next term of

the root, etc. The method being found in all the works on

arithmetic, need not be stated here.

Explanation.—There are two methods of deriving the rule

for square root, or of explaining the reason for the operation.

These methods are distinguished as the Aiialytie and Synthetic

methods. The former consists in resolving the number into

its elements by the laws obtained by the analytic method of

involution
;
the latter consists in finding the root by means of

a geometrical diagram by reversing the process of the corres-

ponding method of involution. The synthetic method will

apply to both the square and cube root of numbers, but cannot

be extended beyond the cube root. The analytic method is

general, and can be applied to the determining of any root of

a number.

In order to determine how many figures there are in the root,
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and where to begin the extraction of the root, we employ the

following principles:

1. The square of a nuviber consists of twice as many fig-
ures as the number, or of twice as many less one.

This principle may be demonstrated as follows: Any integral
number between 1 and 10 consists of one figure, and any num-
ber between their squares, 1 and 100, con-

sists of one or two figures; hence the V=l
square of a number of one figure is a num- 10^=100
ber of one or two figures. Any number

iillo"Ci%o|ooo
between 10 and 100 consists of ^too figures,

and any number between their respective squares, 100 and

10,000, consists of three or four figures; hence, the square of

a number of two figures is a number of three or four figures,
etc. Therefore, etc.

% If a number be pointed off into periods of two figures
each, beginning at units jilace, the number of full periods,

together with the partial period at the left, if there he one, will

equal the nuv\ber of places in the square root.

This is evident from Prin. 1, since the square of a number
contains twice as many places as the number, or twice as many
less one.

Analytic Method.—By the analytic method of explaining
the process of extracting the square root of numbers, we re-

solve the number into its elements, and derive the method of

operation by knosving the law of the synthesis of these elements.

It is appropriately named the analytic method, because it ana-

lyzes a number into its elements, and operates by reversing the

synthetic process of involution. We will illustrate this method

by extracting the square root of 625.

Explanation.—By the principles of involution we see that

there will be two figures in the root, hence the number con-

sists of the square of the tens plus the units of the root, which

equals the square of the tens, plus twice the tens into the

units, plus the square of the utiits. The greatest number of
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tens whose square is contained in 625 f--\- 2lu-{- ir— &-2b(2b
is 2 tens

; squaring the tens and sub- ^''— 20' =4U

tracting we have 225, which equals 2tu-^u- =225
twice the tens into the units, plus the 2/=40

square of the units. Now, since
Q/?/-!-? ''=29^

twice the tens into the units is usually

much greater than the units squared, 225 consists principally
of twice the tens into the units; hence if we divide 225 by
twice the tens, we can ascertain the units. Twice the tens

equals 20x2, or 40; dividing 225 by 40, we find the units to

be 5, etc.

In the margin the law of the involution of the elements is

shown by the use of the letters t and u, the initials oi tens and

units. This representation of the law of the formation of the

number enables us to separate it into its elements.

Synthetic Method.— By the synthetic method we use a

geometrical figure and derive the process from the method of

forming a square v-hose area shall equal the given number. It

is called syntiieti':' because we commence with a smaller square
and add parts to it, until we find a square of the required area.

The method of forming the square will give us a method of

finding the square root. To illustrate, let it be required to ex-

tract the square root of 625.

Explanation.—The greatest number of tens whose square
is contained in 625 is 2 tens. Let A, Fig. 1, represent a square
whose sides are 2 tens or 20 units, its area

will be the square of 20, or 400. Subtract-

ing 400 from 625, we have 225, hence our

square is not large enough by 225
;
we must

therefore increase it by 225. To do this we
add the two rectangles B and C, each of

which is 20 units long, and since they near-

ly complete the square, their area must be nearly 225 units
;

hence, if we divide by their length we can find their width.

Their length is 20x2=40, hence their width is 225-^40 or 5

c
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Now complete the square by the addition of the little corner

square whose side is 5 units, and then the entire length of all

the additions is 40+5, or 45 units, and multiplying by the

width we find their area to be 225 square units. Subtracting,

nothing remains; hence, the side of a square which contains

625 square units is 25 units.

The same method will apply when there are more than two

figures in the root. The methods of operation indicated by
both the analytic and synthetic methods of explanation, are

the same. These methods give the usual rul6 for the extrac-

tion of the square root.'

Case III. The Cube Boot of Numbers. The Cube Boot of

a number is one of the three equal factors of the number.

The cube root of a number may also be defined to be a number

which, used as a factor three times, will produce the given
number. Again, the cube root of a number may be defined as

a number which, raised to the third power, will produce the

given number. These definitions are all correct, though they
differ in idea. The first is analytic; the thought is from the

number to its elements. The second and third are synthetic;

the process of thought is from the elements to the number.

The method of extracting the cube root of a number consists

in analyzing it and finding one of its three equal multiplicative

parts. This is done by first finding the highest term of the

root and taking its cube out of the number, then finding the

second term by means of the first term, taking their combina-

tion out of the number, etc. There are several methods of

doing this, the three most important of which may be distin-

guished as the Old Method, a New Method, and Horner's

Method. There are several other methods, which I do not

regard of sufficient importance to consider in this work.

Old Method.—The Old Method is so called because it is the

one which has for a long time been taught and practiced. It

may be distinguished by the use of 300 and 30 in finding trial

and complete divisors. By a slight modification of the method
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the ciphers of these multipliers may be omitted, and this form

of the method is now generally preferred. The method may
be stated as follows:

Rule.—I. Separate the number into periods of three figures

each, beginning at units place.

II. Find the greatest number whose cube is contained in the

left-hand period ; place it at the right and subtract its cube

from the period, and annex the next period to the remainder

for a dividend.

III. Take S ti)nes the square of the first term of the root

regarded as tens for a trial divisor; divide the dividend by

it, and place the quotient as the second term of the root.

IV. Take 3 times the last term of the root multiplied by the

preceding part regarded as tens; write the result under the

trial divisor, and under this write the square of the last term,

of the root ; their sum will be the complete divisor.

V. Multiply the complete divisor by the last term of the

root; subtract the product from the dividend, and to the

remainder annex the next period for a new dividend. Take

3 times the square of the root now found, regarded as tens, for
a trial divisor, and find the third term of the root as before;
and thus continue until all the periods have been used.

Explanation.—This process of extracting cube root may be

explained by two distinct methods, distinguished as the ana-

lytic and synthetic methods. The analytic method consists in

resolving the number into its elements by the laws obtained

from the analytic method of involution. The synthetic method

consists in ascertaining the different terms of the root by the

building up of a geometrical cube.

In order to determine the number of figures in the root and

with what part of the number to begin the evolution, it is

necessary to state and demonstrate the following principle:

1. The cube of a number consists of three times as many
figures as the number, or of three times as m.any less one or

two.
18
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This principle maybe demonstrated as follows: Any inte-

gral number between 1 and 10 consists of one figure, and any

integral number between their cubes, 1

and 1000, consists of one, two, or three 1 =1

figures; hence the cube of a number of
iaasZ-i onn nnn

one figure is a number of one, two, or

three figures. Any number between 10 and 100 consists of

two figures, and any number between their cubes, 1000 and

1,000,000, consists of four, jix>e, or 8ix figures ;
hence the cube

of a number of two figures consists of three times two figures,

or thy^ee times two, less one or two figures.

2. If a nvmber be jyointed off into j^eriods of three figures

each, beginning at units place, the number of full periods

together with the partial period at the left, if tliere be one, will

equal the number of figures in the root.

This is evident from Prin. 1, since the cube of a number con-

tains three times as many places as the number, or thi'ee times

as many, less one or two.

Analytic Method.—By the analytic method of explaining

the process of extracting the cube root of numbers, we resolve

the number into its elements and derive the process by knowing
the law of the synthesis of these elements in the process of

involution. We will illustrate the method by the solution of

the following problem: Required the cube root of 91125.

Solution.—Since the cube of

a number consists of three times 91 125(40
, ,7 , 40^=64 000 5

as many jjlaces as the number
2Y125 45

27125

itself, or of three times as manv ,^\.t „^^
1 . .u 1 . % 40X5X3= 600
less one or two, the cube root of r2__

q^s

91125 will consist of two places, fttt^
. »

' 5425
and hence consist of tens and

units, and the given number will consist of the cube of the tens,

plus three times the square of the tens into the units, plus three

times the tens into the square of the units, plus the cube of the

'inits.
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The jj^reatest number of tens whose cube is contained in the

given number is 4 tens. Cubing the tens and subtracting, we
have 21125, which equals three times the square of the tens

into the units, etc. Now, since three times the square of the

tens into the units is much greater than all the rest of the ex-,

pression, 27125 must consist principally of th?'ee times the

square of the tens into the units ; hence if we divide by three

times the square of the tens we can ascertain the units. Three

times the tens squared equals 3X40^=4800; dividing by
4800 we find the units to be 5. We then find three times the

tens into the units equal to 40x5x3=600, and units squared

equals 5'^=25. Taking the sum and multiplying by the units,

we have 27125, and subtracting, nothing remains. Hence the ,

cube root of 91125 is 45. From this solution we readily derive

the rule given above.

Synthetic Method.—By the synthetic method of explana-

tion we use a geometrical figure, a cube, and derive the process

from the method of forming a cube whose contents shall equal

the number of units in the given number. The number is

regarded as expressing the number of cubic units in a cubical

block, the number of linear units in whose side will be the

cube root of the number. It is appropriately called synthetic,

since we begin with a cube and add parts to it until we find a

cube of the required contents. The method of forming the

cube indicates the process of finding the cube root. This

method may be illustrated by the solution of the problem

already given: Required the cube root of 91125.

Solution.—We find the number of figures in the root as

before, and then proceed as follows : The greatest number of

tens whose cube is contained in the given number is 4 tens.

Let A, Fig. 1, represent a cube whose sides are 40, its con-

tents will be 40^=64000. Subtracting from 91125 we find a

remainder of 27125 cubic units; hence, the cube A is not large

enough to contain 91125 cubic units by 27125 cubic units; we
will therefore increase it by 27125 cubic units.
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Fig. 3.

To do this we add

the tbree rectangular

slabs B, C, D, Fig.

2, each of which is

40 units in length
and breadth

;
and

since they nearly

complete the cube,

their contents must
be nearly 27125;

hence, if we divide

27125 by the sum of

the areas of one of

their faces as a base,

we can ascertain

their thickness.

The area of a face of one slab

is 40'=1600, and of the three,

3X1GOO=4800; and dividing

27125 by 4800 we have a quo-
tient of 5

;
hence the thickness

of the additions is 5 units. We

Fig. 2.

Fig. 4.

OPERATION.

91-125(40
40^=64 OOP 5

40^X3=4800
40X5X3= 600

5'= 25

5425

27125 45

27125
now add the three corner pieces

E, E, and G, each of which is 40 units long, 5 wide, and 5

thick; hence the surface of a face of each is 40X5=200 square
units, and of the three it is 200X3=fi00 square units.

We now add the little corner cube H, Eig. 4, whose sides are

5 units, and the surface of a face is 5^=25. We now take the

sum of the surfaces of the additions, and multiply this by the

common thickness, which is 5, and we have their solid contents

equal to (4800+600+25)X5=27125. Subtracting, nothing

remains; hence the cube which contains 91125 cubic units is

40+5 or 45 units on a side.

When there are more than two figures we increase the size

of the new cube, Eig. 4, as we did the first, or let the first

cube, Eig. 1, represent the new cube, and proceed as before.
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The Methods Compared.—These two methods of explain-

ing the process of extracting the square and cube roots of num-

bers are entirely distinct; they are based upon different ideas,

though they give rise to the same practical operation. The

synthetic method is the one generally given in the text-books

on arithmetic
;
the analytic method was, until recently, confined

to algebra. It has been a question which of these methods of

explanation is the better, some preferring the one and some the

other. In my own opinion the analytic method is to be pre-

ferred for several reasons, among which the following may be

stated :

First, it is in accordance with the genius of arithmetic; we

explain an arithmetical subject upon arithmetical principles.

By the synthetic method we leave the subject of arithmetic,

and bring in geometry to explain arithmetic. Should it be

said' in reply that by the analytic method we are explaining

arithmetic by algebra, let it be remembered that algebra has

been called "universal arithmetic," and that all the algebra

that is here used is purely arithmetical. In other words,

though we may indicate the analysis of ihe number by letters,

the idea is purely an arithmetical one, and is in no way depend-
ent upon the principles of algebra as diflferent from arithmetic.

Second, I hold that a full, complete, and thorough insight

into the subject can be obtained only by the analytic method.

The geometric method indicates the process, as well as the

analytic; but the analytic method shows the nature of the pro-

cess, it exhibits the law of the formation of the square or cube

as a pure process of arithmetic
;
and this gives a deeper in-

sight into the subject than can be obtained by the other method.

One who knows evolution only by the synthetic method, does

not know it thoroughly.

Third, the analytic method is general; it will explain the

method of extracting all roots. The geometrical method ia

special; it enables us to extract the square and cube roots

only. Thus, the square root is regarded as the side of a
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Fig. 1.

square, the cube root as the side of a cube; but we have no

geometrical conception of the fourth root, no figure correspond-

ing to the fourth power, and therefore no idea of a fourth root;

and so on for the higher roots.

In respect of the comparative diificulty of the two methods,
it may be remarked that it is generally supposed that the syn-
thetic method is much easier than the analytic. This, however,
I very much doubt; and this opinion is founded, not only upon

theory, but also upon the experience of those who have tried

both methods. I believe that a thorough knowledge of the

subject can be gained much sooner by the analytic than by the

synthetic method. My observation has been that pupils often

are able to run over the geometrical explanation without really

understanding it. It is, therefore, recommended that the ana-

Ivtic method be introduced into our text-books and svstems

of instruction.

The so-called synthetic methods of

evolution may also be presented in

an analytic form« Thus, instead of

adding to the square A, page 271,

we can begin with the large square,
take out the square A, then obtain

the width of the rectangles and the

dimensions of the corner square, and
then subtract. Indeed, this seems
the more natural method, and is now

being adopted by American writers.

When thus presented, it would be

better to call the two methods the al-

gebraic and geometric methods.

The same may be illustrated in the

extraction of the cube root. Let Fijr

1 represent a cube which contains

91125 cubic units. Taking out the

cube, A (40' = 64000), we have a solid. Fig. 2, representing
27125 cubic units. This solid consists principally of the three

1
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slabs, B, C, and D, each 40 units in Fig. 3.

length and breadth. Dividing 27125

by the sum of the areas of a face of

each, (3x40-= 4800), we find their

thickness is 5 units. Removing the

slabs, there remain three solids, Fig.

3, each 40 units by 5 units, hence the

surface of a face of the three is 3x 40

X 5 = 600 square units.

Removing E, F, and G, there re-

mains the small cube H, Fig. 4, the

surface of one of whose faces is 5'=

25 square units. Multiplying the

sum of all these surfaces by the com-

mon thickness, 5, we have (4800+
600+25) X 5 --27125 cubic units.

New Method of Cube Root.—I will now present a method

of extracting cube root which is much simpler and more con-

venient than the ordinary one, and indeed than any other with

which I am acquainted. This method seems to have been ap-

proxiniated by several writers, although I have not found any
who present it in the form in which it is here given. Its

arrangement in columns will remind one of Horner's Method,

but a very slight inspection will show that it is quite diflerent

from it.

In order to present the method in a manner to be most read-

ily understood, I will first solve a problem, and then state the

rule. In the operation I will indicate the trial divisor by t. d.,

and the complete divisor by C. D., and use dots, thus, . . to

indicate the local value of tlie terms. The reason for the

method of obtaining the trial and complete divisors may be

readily shown by the formula.

1. Extract the cube root of 14706125.

Solution.—We find the number of figures in the root, and

the first term of the root, as in the preceding method.
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1st Col.

2

4

gT
8

•2d Col.

12. . t. d.

r-256

1456 CD.
16

1728 . . t. d.

3625

14-706-125(245
8

6706

5824

882125

882125

We write 2, the first operation.

term of the root, at the

left at the head of Col. 1st;

3 times its square with

two dots annexed, at the

head of Col. 2d; its cube Y25~
under the left-hand period ;

then subtract and annex 176425 c. D.

the next period for a divi-

dend; and divide it by the

number in Col. 2d, as a trial divisor, for the second term of

the root.

We then take 2 times 2, the first terra, and write the pro-

duct, 4, in Col. 1st, under the 2, and add
;
then annex the sec-

ond term of the root to the 6 in Col. 1st, making 64, and mul-

tiply 64 by 4 for a correction, which we write under the trial

divisor; and adding the correction to the trial divisor, we
have the complete divisor, 1456. W^e then multiply the com-

plete divisor by 4, subtract the product from the dividend, and

annex the next period for a new dividend.

We then square 4, the second figure of the root, write the

square under the complete divisor, and add the correction, the

complete divisor and the square for the next trial divisor,

which we find to be 1728. Dividing by the trial divisor we
find the next term of the root to be 5.

We then take 2 times 4, the second terra, write the pro-

duct 8 under the 64, add it to 64, and annex the third term

of the root to the sum, 72, making 725, and then multiply 725

by 5, giving us 3625 for the next correction. We then find

the complete divisor by adding the correction to the trial

divisor ; multiply the true divisor by 5, and subtract and have

no remainder.

The reason for this method will appear by using letters to

show the law of finding the trial and complete divisors. The

object is to find a general method of obtaining these divisors,
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30 that any one divisor may be used in forming the next follow-

ing divisor. It is evident that by such a method the work will

be greatly abridged.

The rule drawn from this explanation may be stated as fol-

lows:

Rule.—I. Separate the number into periods of three fig-

ures each ; find the greatest number whose cube is contained in

the first period, and write it in the root.

II. WiHte the first term of the root at the head of 1st Col.,

3 times its square with two dots annexed at the head of 2d

Col., and its cube under the first period; subtract and annex

the next period to the remainder for a dividend, divide by the

number in 2d Col. as a trial divisor, and place the quotient

as the second term of the root.

III. Add twice the first term of the root to the number in

the first column; annex the second term of the root, multiply
the result by the second term, and write the product under the

trial divisor for a correction; add the correction to the

trial divisor, and the result will be the complete divisor
;

multiply the complete divisor by the last term of the root,

subtract the product from the dividend, and annex the next

period to the result for a new dividend.

IV. Square the last term of the root, and take the sum of
this SQUARE, the last complete divisor and the last correc-

tion, and annex two dots,for a new trial divisor; divide the

dividend by it and obtain the next term of the root.

Y. Add tivice the second term of the root to the last number
in the first column ; annex the last term of the root to the

sum, multiply the result by the last term, and write the product
under the last trial divisor for a correction

;
add the correc-

tion to the TRIAL divisor, and the result will be the complete

divisor; use this as before, and thus continue until all the

periods have been used.

A part of this method can be easily remembered by means
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of the followiug formulas, which show the formation of the

t7'ial and complete divisors :

1. Trial Divisor+Correction=Complete Divisor.

2. Correction + Complete Divisor + Square=Trial Divisor.

To show the application of the method we will extract the

cube root of 41673648563.

IBT Col,

3
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adoption. It is very concise—the root of a large number can

be extracted with one-half of the work required by the old

method. Its conciseness arises from the fact that it proceeds

upon a principle which enables us to make use of work already

obtained, while the old method requires new calculations every

time we find a trial or true divisor. In other words, it is an

organized method by which the work is so economized that no

operations are superfluous, but each result obtained is made

use of in obtaining a subsequent result.

It is entirely general in its character, applying to the extrac-

tion of all the higher roots. This method can be explained

both analytically and synthetically.. It is presented in several

of the higher arithmetics, and need not be stated here. It is

more difficult to remember than either of the other methods,

and this is perhaps the principal objection to its general adop-

tion. The "New Method" for cube root—it does not apply

to higher roots—is, however, preferred to Horner's, being

quite as concise, and much more readily acquired and remem-

oered.

Approximate Roots.—The invention of rules for approxi-

mating to the square and other roots of numbers, where those

roots are surds, was a favorite speculation with earlier writers

on arithmetic and algebra. These rules will be most readily

understood and their relative values seen by stating them in

algebraic language.

1. The rule given by the Arabs is expressed by the formula,

This approximation gives the root in excess; but to increase

its accuracy, we may repeat the process, making use of the

root obtained. This is the rule given by Lucas di Borgo, and

subsequently by Taftaglia, who derived it in common with the

rest of his countrymen from Leonard of Pisa.
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2. The rule given by Juan de Ortega, 1534, is expressed by
the following formula:

's/(a''j-x)=a-' 2a+l
This approximation is in defect, but, generally speaking, more

accurate than the former.

3. The third method of approximation was proposed by
Orontius Fineus, Professor of mathematics in the university
of Paris, and who long enjoyed an uncommon reputation in

consequence of his having introduced the knowledge of the

mathematics of Italy among his countrymen. His method
consisted in adding 2, 4, 6, or any even number of ciphers to the

number whose root was required, and then reducing the num-
ber expressed by the additional figures of the root resulting
from these ciphers, to sexagesimal parts of an integer. Thus,
in extracting the square root of 10, he would get 3

1
162, which

reduced to sexagesimals, became 3. 9'. 43". 12'".

This is the most remarkable approximation to the invention
of decimals which preceded the age of Stevinus. If the

author had stopped short at the first separation of the digits
in the root, it would have expressed the square root of 10 to

3 decimal places; but the influence of the use of sexagesimals
diverted him from this very natural extension of the decimal

notation, and retarded for more than half a century this im-

provement in the science of numbers
The method of Fineus excited the attention of contempora-

neous mathematicians, who in adopting it, however, did not

reduce the result to sexagesimals, but merely subscribed, as a

denominator to the whole not considered as integral, 1 with half

as many ciphers as had been added in the operation, giving

v'lO^fwl- It is under this form that it is noticed by Tar-

taglia and Recorde. Pelletier also, a pupil of Orontius Fineus,
after noticing the second of the two metbods of approxima-
tion, describes this as more accurate and less tedious than any
other.

Methods of approximation were also quite numerous for the



EVOLUTION. 285

extraction of the cube root. That of Lucas di Borgo may be

seea from the formula,

which Tartaglia s'ays he got from' Leonard of Pisa, who had i*

from the Arabians; and he expresses his surprise that he

should have committed so grievous an error, unless he had done

so without consideration.

The method of Orontius Fineus is represented by the foll9w-

ing formula:

which errs as much in excess as that of Di Borgo in defect.

The method of Cardan is indicated by the formula,

which Tartaglia criticises with great bitterness, as might nat-

urally be expected from one who had been so treacherously

defrauded by him of an important discovery, the general

method of solving cubic equations. His own method is rep-

resented by the formula,

^{a?+x)=a+-
X

which, though more accurate than that of Cardan, errs in defect

while the other erred in excess.

In later times, methods of approximation have been proposed
which give results much more accurate than any of the pre-

ceding. One of the very best that we have met is the follow-

ing, given by Alexander Evans, in the January number of The

Analyst, 1876:

N r
For square root,-^+-

2r 2

N 2r
For cube root, oX^i + "o"

N n-l
For nth root, , -f- r
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To illustrate these formulas we will extract the square root

of 2 and the cube root of 6. Suppose the square root of 2 is

nearly 1.4, then r—lA, and substituting in the formula we
have

N r 2 1 14 99
'

,,,,

-2;:
+ 2

=
2(i|y+2-R7

=
To

= ^-^^''+

which is the correct root to four places; and by substituting f|
in the formula we get the root correct to eight places.

In extracting the cube root of 6, suppose thatr=1.8, then

substituting in the formula we have

-V 2r _ 6 2(-M) _ 50 6 _

which is true to three decimal places. The method cannot be

relied upon, however, to give many correct terms in the ap-

proximation. In applying it to the cube root of 3, regarding
1.4 as the value of r, we obtain for the root, 1.44353, which

is true to only two places. If we then take 1.44 as the value

of r, we shall find the next approximation to be 1.442253,

which is true to four places. If we take r=1.5 as the cube root

of 4, the formula gives the first approximation 1.5925, which is

true to only the first decimal place. If we had taken r=l.(i,

we would have obtained 1.5875, which is correct to three

places. The best method is therefore the general one; for a

person who is familiar with the method which I have given
under the name of the New Method will extract the root more

rapidly than he can with the approximate methods, and may
be always certain of the correctness of bis result.
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CHAPTER I.

INTRODUCTION TO COMPARISON.
"

ARITHMETIC
consists fundamentally of three processes;

Synthesis, Analysis, and Comparison. Synthesis and

Analysis are mechanical processes of uniting- and separating
numbers

; Comparison is the thought process which directs the

general processes of synthesis and analysis, and unfolds the

various particular processes contained in them. Comparison
also gives rise to several processes Vi^hich do not grow out of

the general operations of synthesis at)d analysis, but which

have their origin in the thought process itself The principal

processes originating in Comparison, ai-e Ratio, Proportion,

Progression, Percentage, Reduction, and the Properties of
Numbers. The particular manner in which these processes

originate will appear from the following considerations.

If two numbers be compared with each other, we perceive
a definite relation existing between them, and the measure of

this relation is called Ratio. Numbers may be compared in

two ways: first, by inquiring how much one number is greater
or less than another; and secondly, by inquiring how many times

one number equals another. Thus, in comparing 6 with 2, we
see that 6 is four more than 2, and also that 6 is three times 2.

These relations, expressed numerically, give us the ratio of the

numbers. The former is called a^rithmetical ratio; the latter,

geometrical ratio. The term ratio is generally restricted, how-

ever, to a geometrical ratio, and it will be thus used here.

The comparison of ratios gives rise to several distinct pro-

cesses called Proportion. If two equal ratios be compared,

(291)
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the numbers producing the ratios being retained in the com-

parison, we have what we call a Geometrical Proportion, or

simply a Proportion. When the ratios are simple, we have a

Simple Proportion ; when one or both of the ratios are com-

pound, we have a Compound Proportion.

If we wish to divide a number into several equal parts, bear-

ing a certain relation to each other, we have a process called

Partitive Proportion. If we wish to combine numbers in

certain definite' relations, we have a process called Medial Pro-

portion, usually known as Alligation. If we compare num-

bers so that each consequent is of the same kind as the next an-

tecedent, we have a process known as Conjoined Proportion.

If we have a series of numbers differing by a common ratio,

we may investigate such a series and ascertain its laws and

principles; thus arises the subject of Progressions. If the

ratio is arithmetical, the progression is called an Arithmetical

Progression; if the ratio is geometrical, the progression is

called a Geometrical Progression.

Again, as was shown in the Logical Outline of arithmetic, we

may take some number as a basis of comparison, and develop

the relations of numbers with respect to this basis. It has

been found convenient in business transactions to use one hun-

dred as such a basis of comparison, which gives rise to the

subject of Percentage. In Fractions and Denominate Numbers

we have units of different values under the same general kind

of quantity. By comparing these, it is seen that we may

pass from a unit of one value to one of a greater or less value,

and thus arises the process o{ Reduction. When we pass from

a less to a greater unit the process is called Reduction Ascend-

ing ; when we pass from a greater to a less unit, the process

is called Reduction Descending.

By a comparison of numbers, we may also discover certain

properties and principles which belong to numbers per se, and

also other properties and principles which have their origin in

the Arabic system of notation. Such principles may be em-



INTRODUCTION TO COMPARISON. 293

braced under the general head of the Properties of Numbers.

It is thus seen that several divisions of the science of numbers

are not contained in the original processes of synthesis and

analysis—that is, of addition and subtraction—but have their

roots in and grow out of the thought-process of comparison.

These several subjects, evolved from the comparison of num-

bers, will be considered in the order in which they have beeD

mentioned.



CHAPTER II.

NATURE OF RATIO.

OATIO originates in the comparison of numbers. It is the

J-v numerical measure of their relation. From it arise some

of the most important parts of arithmetic, as proportion, pro-

gressions, etc. Its importance, and the inadequate and diverse

views held concerning it, make it necessary to give quite a care-

ful and thorough discussion of the subject.

Definition.—Ratio is the measure of the relation of two

similar quantities. This definition differs in one respect essen-

tially from that usually given. Ratio is generally defined as

"the relation of two quantities"—relation and ratio being

made equivalent. This is not accurate, or, at least, not suffi-

ciently definite. The word ratio is a more precise term than

relation, as will appear from the following illustration. If we

inquire what is the relation of 8 to 2, the natural reply is
"
8

is four times 2 ;" but if we inquire what is the ratio of 8 to 2,

the correct reply is "four.''^ Here the ratio four is the num-

ber which measures the relation of 8 compared with 2. It is

thus seen that ratio is not merely the relation of two similar

quantities, but the measure of this relation. This definition,

presented in the author's own text-books, has already been in-

troduced by one or two writers, and seems not unworthy of

general adoption.

Tlie Terms.—A ratio arises from the comparison of two

similar quantities. These quantities are called the terms of the

ratio. The first term is called the Antecedent; the second term

is called the Consequent. The antecedent is compared with

( 294)
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ihe consequent; the consequent is the basis or standard of

comparison. Thus, a ratio indicates the value of the first

quantity as compared with the second as a standard. The

ratio, therefore, expresses how many times the consequent must

be taken to produce the antecedent, or what part the antece-

dent is of the consequent. In other words, it answers the

question—the antecedent is how viany times the consequent, or,

the antecedent is what part of the consequent? From this 'it

also appears that the ratio equals the antecedent divided by

the consequent. Thus, the ratio of 6 to 3 is 2, and the ratio of

3 to 6 is ^.

Method of Ratio.—The question has recently been raised

whether the correct method of determining a ratio is to divide

the antecedent by the consequent or the consequent by the an-

tecedent. An eminent author advocates the division of the

consequent by the antecedent, and this method has been adopted

by several American mathematicians. The old method some

of them call the "
English Method ;" the new method, the

"French Method." The so-called
" French Method " we be-

lieve to be incorrect in principle and inconvenient in practice.

The correct method of finding the ratio of two numbers is to

divide the antecedent by the consequent. Several reasons will

be given in favor of the correctness of this method, which seem

to us conclusive. For convenience in the discussion, let us

distinguish the two methods as the Old and the New method.

1. Nature of Ratio.—First, I think the correctness of the

Old Method will appear fi'om the nature of ratio itself. If we

inquire
" What is the relation of 8 to 2 ?" the natural reply is,

" 8 is four times 2." Here the number four is the measure of

the relation; hence the ratio of 8 to 2 is four. If the inquiry

is, "What is the relation of 2 to 8 ?" the natural reply is
"
2 is

one-fourth of 8 ;" hence in this case, the ratio is one-fourth.

From this view of the subject it follows that the correct method

of determining a ratio is to divide the antecedent by the conse-

quent, and not the consequent by the antecedent.
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If I ask the relation of 8 to 2, it would be illogical to reply,
" 2

is one-fourth of 8," for this does not answer my question. In

giving the reply, that number should be used first in making the

comparison which was used first in the question, and it would
be illogical and absurd to invert the order

; yet this is really what
those who advocate the other method must do. If the ratio of

8 to 4 is one-half, then when I ask the question, "What is the

relation of 8 to 4 ?" they must say, "4 is one-half of 8," unless

it be supposed that they would say,
"
8 is one-half of 4."

This may be impressed by an illustration suggested by Prof
Dodd. Of two persons, A and B, suppose A to be the father
and B the son. Now if the question be asked,

" What is the

relation of ^ to i? ?" the correct reply is "A is the father of

i^," and it would be inconsistent to answer, "B is the son of

^," for that is the reply to the question,
" What is the relation

of B to AV^ The same holds in regard to the comparison of

numbers, and with even greater force, since it is necessary to

be more explicit in science than in ordinary conversation.

Hence, if the question is asked,
" What is the relation of 8 to

2 ?" the correct reply is, "8 is four times 2 ;" from which we
see that the ratio is four. It is clear, then, that the ratio of

two numbers, which is the measure of the relation of the first
to the second, is equal to the first divided by the second.

2. Law of Comparison.—The true method of determining
a ratio may also be shown by the nature and object of the com-

parison. The law of comparison is to compare the unknoivn
with the known; thus, we logically write a;=4, and not 4=a;.

Now, in a ratio, one number is made the basis of comparison,
the object being to comprehend or measure the other number

by its relation to the basis. In this sense the basis may be

regarded as the known quantity, and the other number as the

unknown quantity. Now the unit is the basis of all numbers
;

it is the standard by which all numbers are measured
;
we un-

derstand a number only as we know its relation to the unit.

When any number, as 8, is presented to the mind, we compare

I
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it with the unit, not the unit with it. The inquiry is, 8 is how

many times one ? hence 8 is the first number named in the com-

parison ;
it is, therefore, the antecedent, and the ratio is the

quotient of the antecedent by the consequent. The advocates

of the new method of ratio would have us compare the 1 with

the 8, the unit of measure with the thing to be measured, the

known with the unknown. This is not only awkward, but it

is directly opposed to the established principles of logical

thought.

3. Authority.—One of the strongest arguments in favor of

the division of the first term by the second is the usage of

eminent mathematicians. That signification of scientific terms

which custom has fixed should not be changed but for the

strongest reasons. From the earliest periods of science, math-

ematicians have divided the antecedent by the consequent. It

was the method employed by Euclid, Pythagoras, and Archi-

medes, the three great mathematicians of antiquity ;
and by

Newton, LaPlace, and LaGrange, the three great mathemati-

cians of modern times. The English and German, and nearly
all the French mathematicians, employ this method, and have

done so from the earliest periods. One or two French, and a

few American authors have adopted the New Method; but

with these few exceptions, the Old Method is the method of

mathematicians at all times and in every country where the

ratio of numbers has been employed.
But not only is the authority of numbers upon this side of

the question, but also the greater weight of the authority of

eminence. The practice of all of the great mathematicians of

every age is in favor of the Old Method. In its favor we may
mention the illustrious names of Euclid, Pythagoras, Archi-

medes, and to these add the not less illustrious names of Dio-

phantus, Newton, Leibnitz, LaPlace, LaGrange, the Bernoullis,

Legendre, Arago, Bourdon, Carnot, Barrow, Herschel, Bow-

ditch, Pierce, etc.; names which shed a lustre over their country
and age, and which are symbols of grand achievements in the
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science. All the great works, the masterpieces which stand as

monuments of the loftiest triumphs of genius, are upon this side of

the question. The Principia of Newton, the Mecanique Celede

of LaPlace, the Mecanique Analytique of LaGrange, the

TJieorie des Nombres of Legendre, the Analytical Mechanics

of Pierce, all employ the Old Method. Such universal agree-

ment among great mathematicians should be regarded as a final

settlement of the matter.

4. Inconvenience of the Change.—Again, the Old Method

cannot be changed without confusion. There are definitions

in science which involve the idea of ratio, and a correct appre-

hension of these definitions requires a precise idea of ratio.

These definitions are founded upon the Old Method of ratio
;

hence, if we change the method of determining ratio, Ave shall

either have a wrong idea of the subjects defined, or else the

definitions must be changed. The latter would be almost a

practical impossibility, since they have become fixed forms in

scientific language. Science has embalmed certain definitions,

and it would seem almost like sacrilege to disturb them. .

Among these definitions may be mentioned those of apecific

gravity, differential co-efficient, index of refraction, and the

geometrical symbol -. The specific gravity of a body is defined

to be the ratio of its weight to the weight of an equal volume

of some other body assumed as a standard. The index of re-

fraction is the ratio of the sine of the angle of incidence to the

sine of the angle of refraction. The differential co-efficient is

the ratio of the increment of the function to that of the varia-

ble. The geometrical symbol :: is the ratio of the circumfer-

ence to the diameter. These definitions have the authority of

the great masters, and will, without doubt, remain as they are.

One or two of them have been changed by the advocates of

the New Method, but such changes will hardly extend beyond
their own text-books,

5. Origin of Symbol.—It may further be remarked that the

assumed origin of the symbol of ratio is in favor of the method
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here advocated. It is said that the symbol of ratio is derived

from that of division
;
that is, that : is the symbol h- with the

horizontal line omitted. The symbol of division indicates that

the quantity before it is to be divided by the cue following it;

hence if the theory of the origin is true, it indicates that prima-

rily the ratio of two numbers was the quotient of the first

divided by the second
;
and this primary method should be

followed, unless there are good reasons to the contrary.

In this connection I remark that the Old Method of ratio

gives us the simplest idea of a proportion. A proportion is

an equality of ratios, and this idea is most clearly expressed

thus: 6-7-3=8^4. With the other method of ratio, this sim-

ple idea of a proportion cannot be presented. Whether the

symbol : is a modification of -i-, is, I presume, not definitely

known. It is so asserted by some authors
;
but so far as I can

learn, it is not known as a historical fact. It seems very reason-

able, however, and in some old German works I have noticed

that the symbol of division is used for indicating the ratio of

nuijibers.

The "French Method,^' inappropriaiely so called.—These

two methods of ratio have been distinguished by the names

"English Method," and "French Method;" the Old Method

being called the "English Method," and the New Method the

"French Method." These names were first applied, I think,

by Prof. Ray, although others had previously stated that the

French mathematicians made use of the one and the English
mathematicians of the other method. Both of these names are

founded in error. The "French Method" is not used by the

French
;

the general custom of the French mathematicians

is opposed to it. Lacroix is the only mathematician of any
eminence who, so far as I have examined, employs it. The
"
English Method" is not confined to the English, but it is used

by French, Germans, Prussians, and Austrians, in fact, by the

mathematicians of all countries, and is, therefore, incorrectly

named the English Method.
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Nearly all the mathematicians of France, it has been said,

employ the so-called English Method, and all of the most emi-

nent ones do so. Among these may be mentioned LaPlace,

LaGrange, Legendre, Bourdon, Vernier, Comte, Biot, Carnot,

Arago, etc. In proof of this, I will quote from some of their

own works. M. Bourdon, in his Arithmetic, page 222, says,

*^Par exemple, le rapport de 24 d 6 est -^, ou 4 ; et celui de 6

a 24 est ^\, ou \. Legendre, in his Geometry, Book lY., Prop.

XIV., says, "done le rapport de la circon/erence au diametre

designe ci-dessus par tz =3.1415926." Vernier, in his Arith-

metic, page 118, says,
" comme la raison est le quotient qu' on

obtient quand on divise V antecedent par le consequent.'''* Other

authors might be quoted, but these are sufficient to show that

the so-called French Method is not the method of the French.

Legendre and Bourdon are especially referred to, since some

popular American text-books, supposed to be translations from

these authors, employ the New Method, and have been instru-

mental in leading quite a large number of American authors

and teachers to adopt that method.

In turning to Lacroix, we see a departure from the general

usage of the French mathematicians. In his Arithmetic, which

is the only work of his that I have examined, he says, page 85,

in comparing the numbers 13, 18, 130, and 180, we see '-que le

deuxieme contient le premier autant de fois que le quatrieme
contient le troisieme; et ils forment ainsi ce qu^on appelle une

proportion.''^ Notice that he is here discussing the subject of

proportion, and not the subject of ratio by itself. On the -next

page he remarks, "Je continuerai de prendre le consequent du

rapport pour le numerateur de la fraction qui exprime le

rapport et V antecedent pour le denominateur."

This places Lacroix upon the opposite side of this question ;

and it is clear from the manner in which he expresses himself,

that he is conscious of taking a position not authorized by the

general custom of his countrymen. I think it can readily be

seen how Lacroix was led into this error He commences the
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subject with a problem in proportion, which he solves by anal-

ysis, and then, by a mistake plausibly drawn from the process
of analysis, seeming to think that the analysis dictates a divi-

sion of consequent by antecedent, he defines his terms and an-

nounces his method of ratio. The whole discussion is as illog-

ical as the conclusion is incorrect. He begins the subject with

proportion instead of ratio, thus inverting the whole problem
and getting the method of ratio inverted also. The true method
is to begin by comparing numbers, determining their relations;

and then comparing their relations, make a proportion ; the first

will give the true idea of Ratio, and the second of Proportion.
Answer to Arguments in Favor of the New Method.—Th.\Q dis-

cussion would be imperfect without an a,ttempt to answer some

of the arguments which have been presented in favor of the

so-called "French Method." An eminent author and educator,

who has done more for the adoption of the New Method than

any other person in this country, gives a formal defense of it
;

a few of his arguments I will notice. His first argument, which

is founded upon the nature of comparison, has already been

answered in the previous discussion. He says, in comparing

numbers,
" the standard should be the first number named ;"

hence, to comprehend 8, he would compare the basis of num-

bers, or 1, with 8, instead of comparing the 8 with 1, that is,

the number with the basis. The mistake he makes is in com-

paring the standard with the thing measured
;

that is, the

known with the unknown
;
the true law of comparison being just

the reverse of this.

This will be readily seen in continuous quantity which can

be clearly understood only by comparing it with some definite

part of itself assumed as a unit. Thus, suppose a period of time

is considered
;

it is clear that we can get a definite idea of it by

comparing it with some fixed unit, as a day, or a week, or a

year. In these cases it will be seen that we do not compare the

unit with the given quantity, as the author quoted would main-

tain, but the quantity to be measured with the unit of measure.
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His second argument is that the New Method gives a con-

venient rule for Proportion ;
the fourth term being equal to the

third term multiiMed by the ratio of the first to the second.

The reply is that the Old Method gives just as convenient a rule,

namely,
" The fourth term equals the third divided by the ratio

of the first to the second." His third argument is, that in a

geometrical progression the ratio is the quotient of any term

divided into the following term. This is the most plausible

argument advanced, and demands special notice. If it be true

that the ratio of any term to the following term is the quotient

of the second divided by the first, then it is true that we here

depart from the general method of ratio
;
but still it would not

follow that the general method of ratio should be changed to

harmonize with this exceptional case. A more sensible conclu-

sion would be that the method here used should be changed to

correspond with the general method. That the general should

control the special and not the special the general, is a fixed

law of science. Let us see, however, if the form of writing a

geometrical progression does present an exception to the

general method of expressing a ratio.

In a geometrical progression, the ratio is the measure of the

relation that any term bears to the preceding term. In the

series 1, 2, 4, 8, etc., we do not compare the 1 with the 2, the 2

with the 4, etc., to determine the ratio, as will appear from the fol-

lowing considerations. Suppose, for illustration, that Ave wish

to find any term of the series, as the 5th term, would we not

reason thus : the 5th term must bear the same relation to the

4th, that the 4th does to the 3d
;
and since the 4th is twice the

3d, the 5th term must be twice the 4th, or 16. Here we follow

the law "of comparison, by comparing the unknown with the

known, and reversing the apparent order, name the 8 first and

the 4 after it. Should we write the comparison out in full, we
would have 5th : 8 : : 8 : 4. If this is true, then, in a geometri-

cal series, we do not compare a term with the following term,

but rather with the term preceding it. The ratio of the series,
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it thus appears, is the ratio of any term to the preceding term,

and not to the term following it. In other words, we compare

backward, instead of forward, as in ordinary ratio
;
and really

divide the antecedent of the comparison by the consequent tc

obtain the ratio.

Some writers explain this apparent departure from the gen-

eral signification of ratio, by saying that in a geometrical series

we express the "inverse ratio of the terms." Says one,
"
It is

less troublesome to express the common ratio inversely, as then

one number will suffice." Says another, "Whenever we meet

with the expression, the 'ratio of a" geometrical series,' we are

to understand the inverse ratio." It seems clearer to me to

say that the order of writing the terms is in opposition to the

order of thought. We write one way and compare another

way. If the expression of the series were dictated by the

idea of ratio, we would write it from the right toward the left.

The fact is, however, that in a geometrical progression, it is

the rate of the progression that we consider, rather than the

ratio of the terms; that is, the rate at which the series pro-

gresses, and this term would be preferable to ratio in this con-

nection. A series of terms, increasing or decreasing by a common

multiplier, although an outgrowth from the idea of ratio, pre-

sents an idea not identical with that of ratio.

This distinction is actually made by several French writers.

They use the diiferent words ropx)ort and raison ; the former

to express the ratio of two numbers, the latter to denote the

rate of the geometrical series. Thus Bourdon, in his Arith-

metic, page 279, says,
" On appelle Progression par Quotient

une suite de nombres tels que le rapport d'un terme quelconque
a celui qui le precede est constant dans toute Vetendue de la serie.

Ge rapport constant, qui existe entre un terme et celui qui le

precede immediatement se nomme la Raison de la progression.''^

Prof. Henkle, who has written several excellent articles upon
this subject, quotes Biot to the same effect. He says of a geomet-
rical progression,

" Le Rapport de chaque terme au precedent se
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nomme Raison.''^ It will thus be seen that some of the French

writers distinguish between ratio and the constant multiplier of

a progression, and should the word rate be adopted with us,

we would avoid the objection of this seeming departure from

the general signification of ratio.

I have devoted so much space to the discussion of this sub-

ject, because I think it one upon which there should be uni-

formity of opinion and practice. Several of our most popular

elementary text-books on mathematics have adopted the so-

called "French Method," and are teaching it to the youth of

the country. Pupils who have been taught the method can

with difficulty relinquish it, and if they proceed to Philosophy

and Higher Mathematics they will meet with difficulty in every

subject containing definitions involving ratio. It is proper to

remark that since this article was written, now some ten or

twelve years, several authors who had adopted the new

method, have discarded it and now use the old method.



CHAPTER III.

NATURE OF PROPORTION.

PROPORTION
arises from the comparison of ratios. Com-

parison begins with comparing numbers, giving rise to the

idea of relation, the measure of which is ratio. After becoming

familiar with the idea of the relations of numbers, we begin to

compare these relations; when equal relations are compared,
we attain to the idea of a Proportion.

Proportion, it is thus seen, has its origin in comparison; it is

a comparison of the results of two previous comparisons. Every
proportion involves three comparisons; the two which give rise

to the ratios, and a third, which compai'es or e([uates the ratios.

All of these comparisons are exhibited in the expression of a

proportion; the symbol of ratio in the two couplets showing
the first two, and the symbol of equality between the couplets

showing the third. A proportion, therefore, involves four

numbers, so arranged that it wn'll appear that the ratio of the

first to the second equals the ratio of the third to the fourth.

Thus, the ratio of 6 to 3 being the same as the ratio of 8 to 4,

if they are formally compared, as 6 : 3=8 : 4, we have a pro-

portion.

Notation.—A proportion may be written by placing the sign
of equality between the two ratios compared; thus 2 : 4=3 : 6.

Instead of the sign of equality, the double colon is generally
used to express the equality of ratios, the proportion being

written, 2 : 4 : : 3 : 6. The symbol of equality, however, is

frequently used by the French and German mathematicians,
and is always to be preferred in presenting the subject to

30
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learners. A proportion may be read in several different ways.

Thus we may read the above proportion,
—"the ratio of 2 to 4

equals the ratio of 3 to 6;" or "2 is to 4 as 3 is to 6." The

latter is the method generally used.

Definition.—A Proportion is the comparison of two equal

ratios; or, it is the expression of the equality of equal ratios.

In this expression the numbers that are compared to obtain the

ratio must be indicated. A proportion is thus seen to be an

equation, and should be thus regarded. An equation, as gen-

erally used, expresses the relation of equal numbers
;
a pro-

portion expresses the relation of equal ratios One arises from

the comparison of quantities; the other, from the comparison

of the relations of quantities. The former is an equation

between equal numbers
;
the latter is an equation between equal

ratios.

The definition of proportion generally given is, "A propor-

tion is an equality of ratios." This is true, but it is not suf-

ficiently definite to constitute a perfect definition. There must

be not only an equality of ratios, but a formal comparison of

these ratios, to produce a proportion. This comparison must

also exhibit the numbers which w-ere compared to produce the

equal ratios. Thus, the ratio of 6 to 3 is 2, and the ratio of 8

to 4 is 2
;
here is an equality of ratios, but not a proportion.

Again, if we compare the ratios 2 and 2, we have the equation

2=2, which is not a proportion, since it does not exhibit the

numbers which produce the equal ratios. To give a proportion,

it is essential that the ratios be compared, and that the com-

parison of the numbers w-hich give the ratios be exhibited.

The mere equating of the ratios is not sufficient; the propor-

tion must show the numbers w^hich, compared, give rise to

the equal ratios. A proportion, then, is not only an "
equality

of ratios," but it is a comparison of equal ratios, in w^hich

the comparison of the numbers compared for a ratio is ex-

hibited.

This idea of the exhibition of the numbers compared for the
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ratios, though not formally stated in the definition which I

have presented, may be directly inferred from it. For, if we

compare as above, 2=2, so far as we can see, it is merely a

comparison of numbers, and not a comparison of ratios. It is

true that every ratio is a number, but the converse is not true:

hence 2=2 may or may not be the comparison of two ratios.

Such comparison would be indefinite; therefore, to express

definitely and clearly the equality of ratios, we must retain the

numbers compared, to show that the equation is an expression
of equal ratios, and not a mere comparison of numbers. The
definition is consequently regarded as sufficiently explicit to

prevent any misapprehension. Should we wish to incorporate
this idea in the definition, we might define as follows: A Pro-

portion is a comparison of equal ratios, in which the numbers

producing the ratios are exhibited.

Kinds of Proportion.—There are several kinds of propor-

tion, resulting from a modification or extension of the pri-

mary ideas of ratio and proportion. A comparison of three or

more pairs of numbers having equal ratios, is called Continued

Proportion. An expression of the equality of compound ratios

is called Compound Proportion. An Inverse Proportion
is one in which two quantities are to each other inversely as

two other quantities. An Harmonical Proportion is one in

which the first term is to the last as the difi"erence between the

first and second is to the difference between the last and the

one preceding the last. We have also Partitive and Medial

Proportion, which will be defined subsequently. The propor-
tion requiring special consideration is Simple Proportion, or

the comparison of two simple ratios.

Principles.—The principles of Proportion are the truths

which belong to it, and which exhibit the relations between the

different members. The fundamental principle of Proportion
is that the product of the means equals the product of the ex-

tremes. From this we derive several other principles by which
we can find the value of either of the four terms when the
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Other three are given. There are many other beautiful princi-

ples of Proportion, besides this fundamental one and its imme-

diate derivatives, which are not usually presented in arithmetic,

but may be found in works on algebra and geometry. They

are, however, just as much an essential part of pure arithmetic

as of geometry, and can all be demonstrated as easily here as

there. Indeed, they belong to arithmetic rather than to geom-

etry, since a ratio is essentially numerical, and hence should be

treated in the science of numbers. These principles, it will be

seen, are not self-evident
; they admit of demonstration. Re-

membering this, it may be asked, what then becomes of the

assertion of the metaphysicians, that there is no reasoning in

pure arithmetic ?

Demonstration.—The fundamental principle of Proportion

may be demonstrated in two ways. The method generally

given is the following : Take the proportion 4 : 2 : : 6 : 3.

From this we have |=|; clearing of fractions, we have 4x3

=2x6; and, since 4 and 3 are the extremes, and 2 and 6 the

means, we infer that the product of the extremes equals the

product of the means. This is the method generally used in

algebra and geometry. Although entirely satisfactory as a

demonstration, the objection might be made that though it

proves that the products are equal, it does not show why they

are equal.

Another method which, in arithmetic, is preferred to the above,

is as follows : From the fundamental idea of ratio and propor-

tion, we see that in every proportion we have 2d term x ratio

. 2d term : : 4th term x ratio : 4th term. Now, in the product

of the extremes, we have 2d term, ratio, and 4th term, and in

the product of the means, we have the same factors
;
hence

the products are equal. This is a simple method, clearly seen,

and shows not only that the products are equal, but that they

must be so, and why they are so, which the other method does

not. The products are seen to be equal because in the very

nature of the subject they contain the same factors.
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The same demonstration may be put in the more concise

language of algebra. Take the proportion a : b : : c : d, lei r

= the ratio, then we have a^b=r, hence a=b.r, and in the

same way c=d.r
;
hence the proportion becomes b.r : b : : d.r

: d. Now, in the extremes we have b, r, and d, and in the

means we have the same factors
;
hence the two products will

be equal.



CHAPTER lY.

APPLICATION OF SIMPLE PROPORTION.

SIMPLE
PROPORTION is employed in the solution of prob-

lems in which three of four quantities are given, to find the

fourth. These quantities must be so related that the required

quantity bears the same relation to the given quantity of the

same kind that one of the two remaining quantities does to the

other. We can then form a proportion in which one term is

unknown, and this unknown term can be found by the principles

of proportion. Thus, suppose the problem to be,—What cost

3 yards of cloth, if 2 yards cost $8?

Here we see that the operation.

cost of 3 yards bears the Cost of 3 yds. : $8 : : 3 yds. : 2 yds ;

8X3
same relation to the cost Cost of 3 yds.= =$12.

of 2 yards that 3 yards
bears to 2 yards ;

nence we have the proportion given in the

margin, from which we readily find the value of the unknown

term. •

In all such problems three terms are given to find the fourth
;

from which Simple Proportion has been called the Rule of
Three. It was regarded as very important by the old school

of arithmeticians, and was by them called "The golden rule of

three." It is now falling into disrepute, the beautiful system

of analysis having, to a great extent, taken its place. The

method of analysis is simpler in thought than that of proportion,

and in many cases is to be preferred to the solution by propor-

tion, especially in elementary arithmetic; but still the rule of

(310)
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Simple Proportion should not be entirely discarded. The

comparison of elements by proportion affords a valuable disci-

pline and should be retained for educational reasons
;

and

moreover it is also valuable, if not indispensable, in the solu-

tion of some problems which can hardly be reached by analysis.

In algebra, geometry, and the higher mathematics, it is, of

course, indispensable.

Position of the Unknown Quantity.—It is seen that, in the

solution of the preceding problem by proportion, I place the

unknown quantity in the first term. This is not in accordance

with general custom; other writers place the unknown quan-

tity in the fourth term. I have ventured to depart from this

custom, and to recommend the general adoption of such a depar-

ture, for reasons which seem to me conclusive. These reasons

are twofold : fir.st, the method suggested is dictated by the

laws of logic; and, second, it is more convenient in practice.

Both of these points will be briefly considered.

Fird. The law of correct reasoning is to compare the unknown

with the known, not the known with the unknown. The ordi-

nary method begins the proportion with the known quantities,

thus comparing the known with the unknown, in violation of

an established principle of logic. The method I have suggested
commences with the unknown quantity, and thus compares the

unknown with the known, in conformity to the laws of thought.

It seems therefore that the old method is not logically accu-

rate, and that the correct method of solving a problem in Rule

of Three is to place the unknown quantity in the first term.

Second The method proposed will be found to be much

more convenient in practice. A proportion is more easily

stated by beginning it with the unknown term. This will

be especially appreciated by those who have taught Trigo-

nometry. In stating a proportion so as to get the required

quantity in the last term, I have seen pupils try two or three

statements before obtaining the right one. It cannot be readily

seen how the proportion should begin so that the unknown
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quantity shall come in the last term. If, however, the pupil

begins the proportion with that which he wishes to find, the

other terms will arrange themselves without any difficulty.

Suppose, for instance, that we wish to obtain an unknown

angle of a triangle. If we reason thus : sine of the required

angle is to the sine of the given angle as the side opposite the

required angle is to the side opposite the given angle; the

pupil will write the proportion without any hesitation. If we

reverse this order, it is necessary to go through the whole

comparison mentally before beginning to write, so that we

may be sure to close the proportion with the required quantity.

It is therefore believed that the simplest method of stating a

proportion is to place the unknown quantity in the first term.

The utility of this change has been frequently illustrated in

my own experience. I remember, while visiting a young
women's college, hearing a recitation in geometry in which the

professor was trying to lead a pupil to state a proportion from

M'hich a certain line could be determined. The 3'oung lady made

several attempts and failed, when 1 said, "Professor, let her

begin with the line she wishes to find." He accepted the sug-

gestion, and she immediately stated the proportion correctly.

Several authors suggest that the unknown quantity should

be placed sometimes in one term and sometimes in another to

test the pupil's knowledge of the subject. This is a valuable

suggestion ;
but any position of the unknown term except in

the fourth term they regard not as a general, but as an excep-

tional method. Their rule is to place the unknown term last;

any other arrangement is the exception. What I claim is that

the placing of the unknown quantity in the first term should

be the rule, and any other arrangement the exception. It is

recommended also that the teacher require the learner to place

it in different terms, that he may acquire a clear and complete
idea of the subject.

Symbol for the Unknown.—Some authors employ the letter

X in arithmetic as a symbol for the unknown quantity. Thus,
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in the problem previously presented, we may write .r : $8 : : 3 :

2. This practice is derived from the French, and is commend-

able. It is sometimes objected, that it is introducing algebra

into arithmetic; but such objection, however, is not valid. Al-

gebra and arithmetic are not two distinct sciences, but rather

branches of the same science. The former, at least in its ele-

ments, is but a more general kind of arithmetic; and it is not

at all improper to introduce its concise and general language
into arithmetic. I think it well, with younger pupils, to ex-

press the unknown term in an abbreviated form as is indicated

in the previous solution
;
when pupils become familiar with

this, I would use the symbol a; as a representative of it.

Three Terma Statement.—It is seen that in the solution of

the given problem in proportion, I use four terms in the state-

ment. Many authors, however, use only three terms in stating

a proportion. This was the method of the old authors, when
rules reigned and principles were ignored, in what might be

called "the dark ages" of arithmetic. Several recent writers

have broken away from the old usage, and write the proportion
with four terms instead of three. It is unnecessary to say
that the old method was incomplete and incorrect. An ex-

pression is not a proportion unless it has four terms. The old

method was merely mechanical, and gave the pupil no idea, or

at least a very imperfect idea, of the true nature of proportion.
The sooner the new method is generally adopted the better for

science and education.

Method of Statement.—No subject in arithmetic is so illogi-

cally presented as Simple Proportion in its application to the

solution of problems. In the statement of the proportion, all

reasoning seems to be completely ignored, and the whole thing
becomes a mere mechanical operation for the answer. The pro-

cess is as follows :

" Write that number which is like the answer

sought as the third term; then if the answer is to be greater

than the third term, make the greater of the two remaining
number? the second term and the smaller the first term," etc.

14
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Now, though this might do well enough as a rule for get-

ting an answer, to require the pupils to explain the solution by

it, as is done in many instances, is to rob the subject of any
claims to a scientific process. The pupil thus taught to solve

his problems has no more idea of proportion than if the subject

were not presented in the book. The whole process becomes a

piece of charlatanism, utterly devoid of all claims to science.

A better rule would be this : Wi'ite (he number like the answer ;

if the answer is to be greater, multiply by the greater of the

other two numbers and divide by the less, etc. This would be

the better method, since it makes no claims to be a scientific

process, as the other does. Both methods are absurd as a pro-

cess of reasoning in Arithmetic
;
but the latter less so, since it

makes no pretensions to be a reasoning process.

What then is the true method? I answer, if a pupil cannot

state a proportion by actual comparison of the elements of the

problem, he is not prepared for proi)ortion, and should solve

the question by analysis. If he uses proportion, he siiouid use

it as a logical process of reasoning, and not as a blind mochnn-

ical fofm to get the answer. He should then be required to

reason thus: Since the cost of 3 yds. bears the same relation to

the cost of 2 yds. that 3 yds. bear to 2 yds., we have the pro-

portion, cost of 3 yds. : $8 : : 3 yds. : 2 yds.

If this is not evident and cannot be readily seen, then we
should dispense with proportion until the pupil is old enough
to understand it, and require the problems to be solved by analy-

sis. If the unknown quantity be placed in the last term we
would reason thus : Since 2 yds. bear the same relation to 3

yds. that the cost of 2 yds. bears to the cost of 3 yds, we have

the proportion, 2 yds. : 3 yds. : : $8 : cost of 3 yds.

Cause and Effect.
—A new method of explaining proportion

has recently been introduced into arithmetic, which may be

called the method of Cause and Effect. All problems in pro-

portion, it is said, may be considered as a comparison of tiuo

causes and two effects; and since effects are proportional to
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causes, a problem is supposed to be readily stated in a propor-

tion. To illustrate, take the problem, If 2 horses eat 6 tons of

hay in a year, how much will 3 horses eat in the same time ?

Here the horses are regarded as a cause and the tons of hay as

an effect, and the reasoning is as follows: 2 horses as a cause

bear the same relation to 3 horses as a cause, that 6 tons as an

effect, bears to the required effect; from which we have a pro-

portion and can determine the required term.

This method was first introduced into arithmetic by Prof.

H. N. Robinson, and has been adopted by several authors.

The same idea was presented by an arithmetician of Verona,

who distinguished the quantities into agents and patients. It

is supposed that it tends to simplify the subject, enabling
learners more readily to state a proportion than by a simple

comparison of the elements. This supposition, however, is not

founded in truth. Instead of simplifying the subject, the method

of cause and effect really increases the difficulty and tends to

confuse the mind. It lugs into arithmetic an idea foreign to

the subject, to explain relations which are much more evident

than the relation of cause and effect.

Another objection to the method is that the relation of quan-
tities as cause and effect is often rather fancied than real. In

many cases, indeed, there is no such relation existing at all.

Take the problem, "If a man walks 6 miles in 2 hours, how far

will he walk in 5 hours ?" Will the pupil readily see which

is the cause and which the effect ? Will the advocates of the

method, tell us whether the miles or the 2 hours are to be

regarded as the cause? Or take the problem, "If 18d. ster-

ling equal 36 cts. U. S., what are 54d. sterling worth?"

Would not the pupils be puzzled to tell which is the cause and

which the effect? Indeed, there is no relation of cause and

effect in a large number of such problems ;
and any effort to

establish such a relation will confuse that which is simple and

easily understood.

If anything further is needed to show the incorrectness of
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the method, take a problem in what is called Inverse Proportion.

Thus, "If 3 men do a piece of work in 8 days, in what time will

6 men do it?" Here 3 men and 8 days would be regarded as

the first cause and effect, and 6 men and the corresponding
number of days as the second cause and effect. Now, if we
form a proportion, we have the first cause is to second cause as

the second effect is to the first effect; from which we see that

in this case like causes are not to each other as like effects, a

conclusion which completely contradicts the fundamental prin-

ciple of the relation of cause and effect.

Inverse Proportion.—There is a class of problems which give
rise to what is called Inverse Proportion. In this the two

quantities of the same kind are to each other, not directly as the

other two quantities in the order of their relation, but rather

inversely as those quantities. Thus, in the problem,
" If 3

men build a fence in 12 days, in what time will 9 men build

it?" Here we have the required time is to 12 days, not as 9

men to 3 men, but as 3 men to 9 men; that is, inversely as

the order indicated by the order of the terms of the first couplet.

This is sometimes called Reciprocal Proportion, since the quan-
tities are as the reciprocals of 9 and 3

;
that is as

-^
to ^ or 3 to 9

Many problems in Inverse Proportion may, however, be

stated in a direct proportion. To illustrate, take the problem

just solved. Now, if 3 men do a piece of work in 12 days, in

1 day they will do Jj ^f it, and if a number of men do a piece

of work in 4 days, in 1 day they will do
;^

of it
; hence, since

the number of men are to each other as the work done, we have

the direct proportion, "the number of men required is to 3 men,
as I to y'j," from which we can readily find the term required.

If, in this proportion, we multiply the second couplet by 48, it

will become 12 : 4, which gives the same proportion as that

which was obtained by the method of inverse proportion. It

is thus seen that, in some cases at least, the method of inverse

proportion may be avoided, and the problem be expressed by a

direct proportion.
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If, however, in the above problem the number of men in

both cases had been given, and the number of days in one case

required, the problem could not be conveniently stated in a

direct proportion, since to do so would require the reciprocal

of the unknown quantity. Should this quantity be represented

by an algebraic symbol, however, we could still state the pro-

portion directly, and readily find the unknown quantity.

Proportion distinctly Arithmetical.—The subject of propor-

tion is purely an arithmetical process. Ratio is a number,
hence proportion, arising from the comparison of ratios, must

be numerical. These ratios may arise from comparing con-

tinuous or discrete quantities, hence we may have a propor-

tion wherein geometrical quantities are compared. Attention

is called to the fact, however, that the principles of proportion
are only generally true with respect of numbers. A propor-

tion in geometry, comparing four surfaces or volumes, may be

true, but the principles of a proportion can have no meaning in

such a case. In taking the product of the means equal to the

product of the extremes, we shall have one surface or one vol-

ume multiplied by another, which can mean nothing unless

they be regarded as numbers. In geometry we regard the

product of two lines as giving a surface, and the product of a

line and surface as giving a volume; but what idea can we
attach to the product of two surfaces or two volumes ? It is

thus seen that Proportion is essentially a process of numbers,
and is, therefore, a branch of Pure Arithmetic. Since the

principles of Proportion admit of demonstration, we inquire

again what becomes of Hansel's assertion that " Pure Arith-

metic contains no demonstration ?"
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COMPOUND PROPORTIO^r.

A
COMPOUND PROPORTION is a proportion in which one

or both ratios are compound. It is employed in the solu-

tion of problems in which the required term depends upon the

comparison of more than two elements. In Simple Proportion

the unknown quantity depends upon a comparison of two ele-

ments forming one pair of similar quantities; in Compound
Proportion it depends upon the comparison of several elements

forming two or more pairs of similar quantities.

A Compound Ratio has been defined as the product of two

or more simple ratios. The expression of a compound ratio is

( 2 • 4)
J 'S • in i

* ^^ s^ch a ratio be compared to an equal simple

ratio, or if two such compound ratios be compared with each

other, we have a compound proportion. Thus
j f,

'

[
: : "I : 56

and iciiAf*^ i'r'iir ^^^ examples of compound propor-

tion. In these expressions we mean that the value of the first

couplet equals the value of the second; thus, in the first pro-

portion we have |xf or -^^ equals /gj in the second, |x/^=

The subject of Compound Proportion has been even more

unscientiiically treated, if possible, than Simple Proportion. In

no work upon Arithmetic, and indeed in no work upon Algebra,

have I seen the subject presented in a really scientific manner.

Asa general thing, problems are given under the head of com-

pound proportion, to be solved either mechanically by rule, or

else by analysis, which, of course, is not compound proportion.

(318)
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The principles of a compound proportion arc not developed,
and in its application it is regarded, not as a scientific process,

but as a machine for working out the ansAver. This, of course,

is not as it should be. Compound Proportion is just as much
a scientific process as Simple Proportion, and demands just as

logical a treatment. I will enforce what I mean by calling

attention to a few of the principles of such a proportion, and

then showing its scientific application.

Principles.—In Compound Proportion we have certain defi-

nite scientific principles, as in Simple Proportion. A few of

these principles will now be stated.

1. The product of all the terms in the means equals the pro^
duct of all the terms in th-e extremes. To show the truth of

this, take the proportion given
in the margin. From the prin-

operation.

ciples of compound ratio we \t
'

-.ty :
• -l^*,l

1 9 ^ ^ 7 J 1 (5 : 10) (7 : 14[have f X tV=f X T? ;
^^^ clear.

^
2
j< 1:5 ^ 3 ^ JL

^

ing this of fractions we have 2x 5x 6 x 14=3x Vx 4x 10.

2x 5x6xl4= 3x 7x4x10,
which, by examining the terms, we see proves the principle.
From this principle we can immediately derive two others.

2. Any term in either extreme equals the product of the

means, divided by the product of the other terms in the eX'

tremes.

3. Any term in either mean equals the product of the extremes

divided by the product of the other terms in the means.

Other principles can also be derived, as in Simple Proportion,
but the three given are all that are necessary in arithmetic.

Application.
—In the application of Compound Proportion

to the solution of problems, we should proceed upon the same

principles of comparison employed in Simple Proportion. If

we do not, the process is not Compound Proportion, and should

not be so regarded. To illustrate the true method, we take the

problem, "If 4 men earn $24 in 7 days, how much can 14 men
earn in 12 days?"
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In the solution of this problem by Compound Proportion, we
should reason thus : The sum earned is in proportion to the

number of men and the time they labor; hence the sum 14 men
can earn is to $24, the sum that 4 men

earn, as 14 men to 4 men, and also as operation.

12 days to 7 days; giving the com- Sum : 24 : :

-j
!« ! f |

pound proportion which is presented 24x14x12
in the margin. From this we find the

Sum=
^-—^

unknown term to be $144. Or we may
enter a little more into detail, and say—The sum 14 men can
earn in 1 days is to the sum 4 men can earn in 1 days, as 14 men
is to 4 men; and also the sum 14 men can earn in 12 days is

to the sum' that they can earn in 7 days, as 12 is to 7; hence
we have the compound proportion given in the margin.

By Anahjais.—The subject of Compound Proportion is some-
what difficult, in fact too difficult, for young students in arith-

metic. With such the method of analysis should be used
instead of proi^ortion. The analytical method is clear and

simple, and will be readily understood. It should be borne in

mind, however, that when we solve by analysis we are not

solving by compoiind proportion, a fact that seems sometimes
to be forgotten.

In solving the preceding problems by analysis, it is necessary
to pass from the 4 men to 14 men, and from the 7 days to 12

days, the sum earned varying as we make the transposition : to

do this we pass from the collection to the unit, and then from
the unit to the collection. The solution is as follows, the work

being as indicated in the margin.
If 4 men earn $24 in 7 days one man will earn ^ of $24, and

14 men will earn 14 times i or JL4 of
<f.r.i T/.

4 T^ "*
OPERATION.

$24. If 14 men earn -^-x $24 in 7 days, Sum=-i-2-x ^^-X $24.
in one day they will earn \ of J^^ of $24,
and in 12 days they will earn 12 times

-f
of J/- of $24, which is

1^ of J^ of $24, which by cancelling, we find equals $144. In-

stead of putting it in the form of a compound fraction, we could
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have made the reduction as we passed along; but in coiupli-

cated problems the method here used is preferred, as the cau-

cellatiou of equal factors will often greatly abridge the process.

PARTITIVE PROPORTION.

The subject of ratio gives rise to several arithmetical

processes which have received the name of Proportion.

Among these we have Partitive Proportion, Conjoined Pro-

portion, Medial Proportion, Geometrical Proportion, etc. Geo-

metrical Proportion embraces Simple Proportion, Compound

Proportion, Inverse Proportion, etc. The other kinds are

distinguished by their special names. When we speak of pro-

portion, without any qualifying word, we mean Geometrical

Proportion. Geometrical Proportion has been treated in the

preceding part of this chapter ;
the other varieties of proportion

will now be presented.

The comparison of numbers gives rise to a division of them

into parts which shall bear a given relation to each other. This

process has received the name of Partitive Proportion. Parti-

tive Proportion is the process of dividing numbers into parts

bearing certain relations to each other. To illustrate, suppose

it be required to divide 24 into two parts, one of which is twice

the other. An equivalent problem is,
" Given the sum of two

numbers equal to 24, and one of. the numbers twice the other;

what are the numbers?"

Origin.—Partitive Proportion is a process of pure arithme-

tic
;

it originated, however, in the application of numbers to

business transactions. Partnership is a case of Partitive Pro-

portion. But, although the subject had its origin in the appli-

cation of numbers, it is now, in accordance with the law of the

growth of science, a purely abstract process.

Cases.—This subject embraces quite a large number of cases,

arising from the various relations that may exist among the

several parts into which a number is divided. It is evident,

also, that the greater the number of the parts the more compli-
21
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cated will become the process. The most important cases are

the following :

1. When the parts are all equal.

2. When one part is a number more or less than the other.
"

3. When one part is a number of times the other.

4. When one part is a fractional part of the other.

5. When the parts are to each other as given integers.

6. When the parts are to each other as given fractions.

7. When a number of times one part equals a number of

times another.

8. When a fractional part of one equals a fractional part of

another.

These simple cases, it is evident, may be combined with each

other, giving rise to others more complicated than any of these.

A little ingenuity will suggest a large number of such cases,

some of which will be quite interesting.

Method of Treatment.—To illustrate the character of one of

the simple cases and its treatment, let us take a problem and
*

its solution. Case 8 will give us a problem like the following:

Divide 34 into two pans such that |
of the first part equals |

of the second part. The solution of this case is as follows:

If f of the first equals | of the second, ^ of the first equals ^ of

I or f of the second, and | of the first equals | of the second
;

then f of the second, which is the first, plus f of the second, or

-iJ- of the second part, equals 34, etc. The other cases are solved

in my Mental Arithmetic, and need not be presented here.

CONJOINED PROPORTION.

The comparison of numbers also gives rise to an arithmetical

process which has received the name of Conjoined Proportion.

Conjoined Proportion is the process of comparing terms so

related that each consequent is of the same kind as the next

antecedent. The character of the subject is seen by the follow-

ing concrete problem: "What cost 8 apples, if 4 apples are

worth 2 oranges, and 8 oranges are worth 6 melons, and 4

melons are worth 12 cents?"
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An abstract problem, showing that it is a process of pure

arithmetic, is as follows :

"
If twice a number equals 4 times

another number, and 3 times the second number equals 6 times

a third number, and 4 times the third number equals 2 times a

fourth number, and 5 times the fourth number equals 40
;
what

is the first number ?"

Method of Treatment.—Conjoined Proportion is treated by-

analysis, and presents a very interesting application of the

analytical method of reasoning. The problems may be solved

in two ways somewhat distinct; that is, we may begin at the

latter part of the problem, and work back, step by step, to the

beginning; or we may commence at the beginning of the prob-

lem and pass from quantity to quantity, in regular order, until

we find the value of the first quantity in terms of the last. To

illustrate, the problem given may be solved thus :

Solution 1.—If 5 times the fourth number equals 40, once

the fourth number equals \ of 40, or 8, and twice the 4th, which

equals 4 times the 3d, equals 2 times 8, or 16. If 4 times the

3d equals 16, once the 3d equals :|
of 16, or 4, and 6 times the

3d or 3 times the 2d equals 6 times 4, or 24
;
and so on until

we reach once the 1st number.

Solution 2.—If twice a number equals 4 times another, once

the number equals ^ of 4 times, or two times the 2d
;

if 3 times

the 2d equals 6 times the 3d, once the 2d equals g^
of 6 times,

or 2 times the 3d, and 2 times the 2d, or the 1st, equals twice

2 times the 3d, or 4 times the 3d
;
and so on until we find once

the 1st in terms of the given quantity.

Both of these methods are simple and logical. The firsi

method will probably be preferred for its directness and sim-

plicity. It may also be remarked that these prolalems can be

solved by Compound Proportion, and perhaps might have been

logically treated under that head.

MEDIAL PROPORTION.

The comparison of numbers and the combining of them in

certain relations, give rise to an arithmetical process which
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has received the name of Medial Proportion. Medial Propor-
tion is the process of finding in what ratio two or more quan-
tities may be combined, that the combination may have a mean
or average value.

The subject, in its application, is usually called Alligation,

from alligo, I bind or unite together, the name being suggested,

probably, by the method of solution, which consisted of linking
or uniting the figures with a line. It may, however, have been

suggested by the nature of the process itself, in which the sev-

eral quantities are combined.

Origin.—Medial Proportion also originated in the concrete,

that is, in the application of numbers. Indeed, even now it is

difficult to present it as an abstract process ;
that is, as a process

of pure number. It is so intimately associated with the combi-

nation of things of difi"erent values, that it is very difficult to

apply it to the combination of abstract numbers. Still it is

evidently a process of pure arithmetic
;
and its importance and

distinctive character, even as an application of numbers, lead

me to speak of it in this connection.

Cases.—The subject presents a number of cases, the most

important of which are the following:

1. Given, the quantity and value of each, to find the mean
value.

2. Given, the mean value and the value of each quantity, to

find the proportional quantity of each.

3. Given, the mean value, the value of each, and the relative

amounts of two or more, to find the other quantities.

4. Given the mean value, the value of each, and the quantity
of one or more, to find the other quantities.

5. Given, the mean value, the value of each, and the entire

quantity, to find the quantity of each.

Method of Treatment.—As formerly treated, the subject was
one of the most mechanical in arithmetic. The old "linking

process," as presented in the text-books, was seldom understood

either by teacher or pupil. Recently, however, Prof. Wood,

I
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formerly of the New York State Normal School, has made a

very happy application of analysis to the solution of this class

of problems, and poured a flood of light upon the subject, so

that it is now one of the most interesting- processes of arithmetic.

It has extended the domain of the subject also, so that it includes

some of the more difficult cases of Indeterminate Analysis, for

an illustration of which see my Higher Arithmetic.

The method of treatment is to compare one number above

the average with one below it by their relation to the average,

finding how much must be taken to gain or lose a unit on the

one and balancing it with the loss or gain of a unit on the other.

In this way the quantities are balanced around the average,

and the proportional parts of the combination derived. For

an illustration of the method of treatment, see my written

arithmetics.



CHAPTER YI.

HISTORY OF PROPORTION.

THE
Rule of Three, emphatically called the Golden Rule,

by both ancient and modern writers on arithmetic, is found

in the earliest writings upon the science of numbers. In the

Lilawati the rule is divided, as among modern writers, into

direct and inverse, simple and compound, with statements for

performing the requisite operations, which are said to be quite

clear and definite.

The terms of the proportion in the Lilawati are written con-

secutively, without any marks of separation between them.

The first term is called the measure or argument ; the second

is \iB fruit or produce ; the third, which is of the same species"

as the first, is the demand, requisition, desire, or question.

When the fruit increases with the increase of the requisition,

as in the direct rule, the second and third terms must be multi-

plied together and divided by the first
;
when the fruit dimin-

ishes with the increase of the requisition, as in the inv^erse

rule, the first and second terms must be multiplied together
and divided by the third.

No proof of the rule is given, and no reference is made to

the doctrine of proportion upon which it is founded. Under

compound proportion is given the rule for five, seven, nine or

more terms. The terms in these cases are divided into two

sets, the first belonging to the argument, and the second to

the requisition ;
the fruit in the first set is called the produce

of the argument ;
that in the second is called the divisor of the

set
; they are to be transposed or reciprocally brought from one

set to the other, that is, the fruit is to be put in the second set

and the divisor in the first.

( 326 )
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The Rule of Three Du-ect may be illustrated by the follow-

ing example :

If two and a-half palas of saffron be obtained for three-

sevenths of a nishca, say instantly, best of merchants, how

much is got for nine nishcas ?*

Statement :

3 5 9

7 2 1 Answer, 52 palas and 2 camhas.

Rule of Three Inverse may be illustrated by the following

examples: If a female slave, 16 years of age, bring 32 nUhcas,

what will one aged 20 cost? If an ox, Avhich has been worked

a second year, sell for 4 nishcas, what will one which has been

worked 6 years cost ?

1st question.

Statement: 16 32 20. Answer, 25f ms/icas.

2d question.

Statement : 2 4 6. Answer, 1^ nishcas.

In order to understand the solution it must be known that

the value of living beings was supposed to be regulated by their

age, the maximum value of female slaves being fixed at IG

years of age, and of oxen after 2 years' work; their relative

value in the given problem being as 3 to 1. The rule of five

terms may be illustrated by the following example : If the in-

terest of a hundred for a month be five, what is the interest of

sixteen for a year ?

Statement :

1 12, or transposing 1 12

100 16 the fruit, 100 16

5
.

5

the product of the larger set is 960, of the lesser 100
;
the quo-

tient is Hg- or
-\*,

which is the answer.

The interest of money, judging from the examples in Brah-

»To understand their problems in rule of three it must be known that a

paln=i cartfhas ; a carsha=ia mashas ; and a masha=o gunjas, or 10 grains of

barley. Al.so, a nishca=U\ drammas ; a dramma=iQ panas ; apano=4 cacints ;

and a caci7ii='20 cowry shells.
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megupta and Lilawati, varied from 3| to 5 per cent, a month,

exceeding greatly the enormous interest paid in ancient Rome.
It is also very high in modern India, where it is not uncommon
for native merchants or tradesmen to give 30 per cent, per
annum.

The rule of eleven terms maybe illustrated by the following

example : Two elephants which are ten in length, and nine

in breadth, thirty-six in girt, seven in height, consume one

drona of grain ;
how much will be the rations of statement.

ten other elephants, which are a quarter more in 2 10

height and other dimensions ? The fruit and q "4^

denominator being transposed, the answer is og A
A^2_5._ Y)v. Peacock remarks that the principle of

*l ^
this very curious example would be rather alarm- 1

ing, if extended to other living beings besides elephants.

Lucas di Borgo tells us that at his time it was usual for

students in arithmetic to commit to memory one or other of

two long rules which he presents. Tartaglia mentions the first

of these two rules in nearly the same terms as Di Borgo, and

gives also a third, which, however, differs from it only in ex-

pression. This rule formed part of the system in the practice

of this subject, adapted to those who had not sufficient time to

acquire, genius to comprehend, or memory to retain, the rules

for the reduction and incorporation of fractious; a system

reprobated by Tartaglia, and attributed by him partly to the

ignorance of the ancient teachers of arithmetic at Venice, and

partly to the stinginess and avarice of their pupils, who grudged
the time and expense requisite for attaining a perfect under-

standing of the peculiarities of fractions.

An arithmetician of Yerona, named Francesco Feliciano da

Tjazesio, objects to the memorial rules of Di Borgo as being too

general in assuming that two of the quantities are of one species,

and two, including the term to be found, of another species; and

shows that in some cases they are all of the same denomina-

tion. He wishes to distinguish the quantities into agents
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and patients, and these again into actual, or p)'esent, a.nd future.
The first term of the proportion is the present agent, and its

corresponding patient is the second
;
the third term is formed

by the future agent, and its patient is the quantity to be deter-

mined. This, it will be noticed, issimilar to the method of cause

and effect adopted by some recent authors, and supposed to be

original with them.

Di Borgo's method of stating and working a problem may be

seen in the following example: "If a hundred pounds of fine

sugar cost 24 ducats, what will be the cost of 975 pounds?"
via.

100 24
X

1 1

975

1

040
03400
23400 (234 ducati.

10000
100
1

The following example of the same process, with fractions in

every term, is given by Tartaglia :
" If 3^ pounds of rhubarb

cost 2^ ducats, what will be the cost of 23f pounds ?"

975
24

3900
1950

23400

H7^e. ducati,
^ "t
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fractional form, for the purpose of making the process more gen
era!, being equally applicable to fractions and whole numbers.

It is sufficiently curious that he should have considered it

necessary to construct the galea for the division by 100.

Different methods of representing the terms of the proportion
were adopted by different authors. We will state a few of

them as illustrating the solution of the problem, "If 2 apples
cost 3 soldi, what will 1.3 cost?" Tartaglia states the propor-
tion as follows :

Se pomi 2
||

val soldi 3 |i che valera pomi 13.

Other Italian authors write the numbers consecutively with

mere spaces, and no distinctive marks between them; thus,

Pomi. Soldi. Pomi.
2 3 13

or thus,
1 ma. 2 da. 3 tia.

2 3 13

In Recorde and older English writers, they are written as

follows :

Apples. Pence,

2 3

13^~~'~~--~^19^ Answer.

Humfrey Baker, 1562, in speaking of the rule, says, "The
rule of three is the chiefest, and the most protitable, and most

excellent rule of all Arithmetike. For all other rules have neede

of it, and it passeth all others; for the which cause, it is sayde
the philosophers did name it the Grolden Rule; but now in these

later days, it is called by us the Rule of Three, because it re-

quireth three numbers in the operation." He writes the terms

thus:

2 3 13

The custom which generally prevailed during the lYth cen-

tury, was to sepax'ate the numbers by a horizontal line, as fol

lows:
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Apples.
2 .

Pence. Apples.
- 13

Oughtred, by whom the subject of proportion was very care-

fully considered, and from whom the sign, : :
,
to denote the

equality of ratios, seems to have been derived, states a propor-
tion as follows:

2. 3 : : 13

In still later times the simple dot which separated the terms

of the ratios, was replaced by two dots, as in the form which is

now universally employed.

Compound Proportion, as has been stated, was formerly
included under the rule of five, six, etc., terms, there being no

division of the subject into simple and compound proportion.

To illustrate, take the problem,
"

If 9 porters drink in 8 days
12 casks of wine, how many casks will serve 24 porters 30

days ?" In solving such problems Tartaglia usually puts the

quantity mentioned once only in the last place but one, instead

of in the second place. The statement will appear as follows :

9 12 8 30 21-

Divisor, 9x8. Dividend, 12 x 30 x 24

Quotient, ^1^=120.

The example,
"
Twenty braccia of Brescia are equal to 26

braccia of Mantua, and 28 of Mantua to 30 of Rimini
;
what

number of braccia of Brescia corresponds to 39 of Rimini?"

given by Tartaglia, is solved as follows :

Rimini Mantua Mantua Brescia Rimini

30 28 26 20 39

21840 780 Answer, 28.
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We give another example with its solution derived from the

same author.
" Six eggs are worth 10 danari, and 12 danari

are worth 4 thrushes, and 5 thrushes are worth 3 quails, and 8

quails are worth 4 pigeons, and 9 pigeons are worth 2 capons,

and 6 capons are worth a staro of wheat; how many eggs are

worth 4 atara of wheat ?"

960

1_6_ 10—12—4—5—3—8—4—9—2—6—4

622080 Answer, 648.

Alligation.—The rule for Medial Proportion, or Alligation,

is of eastern origin, and appears in the Lilawali, though under

a somewhat limited form. It is there called suverna-ganita, or

computation of gold, and is applied generally to the determin-

ation of the fineness or touch of the mass resulting from the

union of different masses of gold of different degrees of fine-

ness. The questions mostly belong to what we call Alligation

Medial. The only question given in illustration of Alligation

Alternate is the following :

" Two ingots of gold, of the touch of

16 and 10 respectively, being mixed together, the weight be-

came of the fineness of 12
;

tell me, friend, the weight of gold

in both lumps."
The rule given for the solution is,

" Subtract the effected fine-

ness from that of the gold of a higher degree of touch, and that

of the one of the lower degree of touch from the effected fine-

ness; tell me, friend, the weight of gold in both lumps? The

differences multiplied by an arbitrarily assumed number, will be

the weights of gold of the lower and higher degrees of purity

respectively."

Statement: 16,10. Fineness resulting, 12.

If the assumed multiplier be 1, the weights are 2 and 4

mdshas respectively ;
if 2, they are 4 and 8

;
if

-|, they are 1

and 2 : thus manifold answers are obtained by varying the as-

sumption.



HISTORY OF PROPORTION. 383

This rule, though perfectly distinct and clear, applies to two

quantities only, and there is no appearance that it was ever

applied to a greater number; it involves, however, the princi-

ple of the rule which is now used, recognizes the problem as

unlimited, and shows in what manner an indefinite number of

answers may be obtained. The extension of the rule is not

entirely easy, but much more so than the invention of the orig-

inal rule itself; the chief honor of the discovery of the rule

belongs therefore to the mathematicians of Hindostan. The

ffeneral rule was known to the Arabians and was denominated

Sekis, a term meaning adulterous, inasmuch as it is not con-

tent with a single, and, as it were, legitimate solution of the

question. It was sometimes called Cecca by the Italians, who

appear to have known nothing further of the word than its

Arabic origin ;
and it constitutes the alligation alternate of

modern books of arithmetic.

The earlier Italian writers on arithmetic, in imitation of the

practice of their Arabian masters, have confined the applications

of this rule almost entirely to questions connected with the mix

ture of gold, silver, and other metals, with each other. This union

was designated by the term consolare, which probably originated

iu the dreams of astrologers and alchemists, who thought it the

peculiar province of the sun to produce and generate gold; and

as the process of the alchemist in transmuting the baser metals

into gold was supposed to be under the influence of the sun,

this gradual refinement, which they in common tended to pro-

duce, was designated by the common term consolare. In later

times, it was applied to silver as well as gold, and still more

generally to the common union of these metals with copper.

To illustrate the method of Tartaglia, take the question, "A

person ^as five kinds of wheat, worth 54, 58, 62, 70, 76 lire

the staro respectively ;
what portion of each must be taken, so

that the sum may be 100 stara, and the price of the mixture 66

lire the staro ?"
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1st. Ill tliL' proportion of the numbers 10, 4, 10, 8 and 16.

oi 58 62 TO 16
10 4 10 8 16

2d. In the proportion of the numbers 14, 14, 14, 24, 24.

_54, 58^,
62. 10, _76,

10 10 10 12 "12

_4 ^ 4 8 8

14 TI T4 _^ _i
24 24

Tarta-glia has given three other solutions of this example aris-

ing from a different arrangement of the ligatures. Among the

English writers the method gradually assumed the form usually
found in modern text-books. The method of explanation and
the extension of the process as given in a few modern text-

books may be ascribed to DeVolson Wood, formerly of the

New York State Normal School.

Position.—Among the most celebrated rules to which Pro-

portion was applied in the early text-books were those of Single
and Double Position. These rules have been supplanted in

this country by the simpler processes of arithmetical analysis,
but they are still found in English arithmetics; and it has been

suggested by a no less eminent scholar and mathematician than
Dr. Hill, that they should be retained in our text-books on
account of their disciplinary influences. Some historical facts

concerning this old rule will be interesting to the reader.

The rule of Single Position is the only one which is found
in the Lilawati, where it is called hhtacarman, or operation
vnth an assumed number. We shall give a few examples from

it, which, however, present nothing very remarkable beyond the

peculiarities of the mode in which they are expressed.
1. Out of a heap of pure lotus flowers, a third part, a fifth.

I
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a sixth, were offered respectively to the gods Siva, Vishnu, and

the Sun, and a quarter was presented to Bhavani; the remain-

ing six were given to the venerable preceptor. Tell me, quickly,

the whole number of flowers.

Statement: ^, ^, ^, i; known, '6.

Put 1 for the assumed number
;
the sum of the fractions ^,

i i
i, subtracted from one, leaves 2V >

divide 6 by this, and

the result is 120, the number required.

2. Out of a swarm of bees, one-fifth part of them settled on

the blossom of the cadamba, and one-third on the flower of a

silind'hri ; three times the difference of these numbers flew to

the bloom of a cutaja. One bee, which remained, hovered and

flew about in the air, allured at the same moment by the pleas-

ing fragrance of a jasmin and pandanus. Tell me, charming

woman, the number of bees.

Statement: -1-, I, j\: known quantity, 1; assumed 30.

A fifth part of the assumed number is 6, a third is 10, differ-

ence 4
; multiplied by 3 gives 12, and the remainder is 2. Then

the product of the known quantity by the assumed one, beinu

divided by the remainder, shows the number of bees 15.

The following question is from the Manoranjana:

3. The third part of a necklace of pearls, broken in amorous

struggle, fell to the ground; its fifth part rested on the couch,

the sixth part was saved by the wench, and the tenth part was

taken up by the lover
;
six pearls remained strung. Say of

how many pearls the necklace was composed.

Statement : ^, \, ^, y^ ; remained, 6. Answer, 30.

Some authors have attributed the invention of the rules of

position to Diophantus, though it is impossible to discover upon
what grounds. When we consider the nature and difficulty of

the problems solved by him, in those parts of his works which

remain, we are fully justified in supposing that the Greeks had

some method of analyzing and solving such problems, or they

would not have proposed them in such number aud variety.

The Arabs were in possession of the rules for both Single
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and Double Position, with all their applications, and in this

instance had advanced far beyond their Indian masters
;
and

when we consider how small were the additions which they

usually made to the sciences which passed through their hands,

we might very naturally be inclined to suppose that their

knowledge of these rules was derived from the Greeks. There

is, however, a vast gap in the history of the sciences after

the time of Theon, and it is quite impossible to trace with

certainty their transmission to the Arabs, or to ascertain

through what channels some portion of Greek astronomy, at

least, was transmitted to the Hindoos; we must therefore rest

satisfied with the few hints to be gathered from authors between

the 7th and 12th centuries, who had access to many writings

which have since perished.

The Italian writers on arithmetic derived the knowledge of

these rules directly from the Arabians, distinguishing them by

the Arabic name of £Jl Catai/m. The questions proposed by

Di Borgo and Tartaglia are of immense variety, including

(.very case of single and double position; and the rules which

are given for this purpose are such as would immediately result

from the formula given in higher algebras. The following

example is given and explained by Di Borgo :

4. A person buys a jewel for a certain number of fiorini, I

know not how many, and sells it again for 50. Upon making

his calculation, he finds that he gains 3^ soldi in each fiorino,

which contains 100 soldi. I ask what is the prime cost.

Suppose it to cost any sum you choose
;
assume 30 fiorini,

the gain upon which will amount to 100 soldi, or 1 fiorino: 1

added to 30 makes 31
;
and you say that it makes 50 between

capital and gain; the position is therefore false, and the truth

will be obtained by saying, if 31 in capital and gain arises from

a mere capital of 30, from what sum will 50 arise. Multiply

30 by 50, the product is 1500; divide it by 31, the result is

48-1-2.
J
and so much I make the prime cost of the jewel.

Tartaglia says that such questions were frequently proposed
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as puzzles by way of dessert at entertainments, and has mixed

up with his other questions a large number of such problems.

The practice, from some circumstances, appears to be referable

to the Greek arithmeticians of the 4th and 5th centuries, and

perhaps to an earlier period.

BothDi Borgo and Tartaglia sought to include every possi-

ble case of mercantile practice under the Rule of Three, giving

numerous examples and classifying them in various ways. The

Italians were also the inventors of the rule of Practice, which

they regarded as an application of the Rule of Three. Tar-

taglia gives some interesting and practical examples, with var-

ious ingenious methods of solution. The great convenience

of these rules for performing the calculations which were con-

tinually occurring in trade and commerce, made them a favor-

ite study with practical arithmeticians, and they assumed from

time to time a constantly increasing neatness and distinctness

of form. Stevinus, though, speaks of them with some contempt

as forming
" a vulgar compendium of the rule of three, Suffi-

ciently commodious in countries where they reckon by livren,

sous and deniers." John Mellis, in his addition to Recorde's

arithmetic, presents the rules of Practice in a very simple and

complete form, calling attention to them as "
l)riefe rules called

rules of practise, of rare, pleasant, and commodious effect,

abridged into a briefer method than hath hitherto been pub-

lished." Later works gave them still greater compactness and

brevity, and in Cocker's Arithmetic, published in 1677, after

his death, and in others printed towards the end of the 17th

century, they assumed the form in which they are now found

in English arithmetics.

The subjects of Partnership and Barter, also treated by an

application of Proportion, seem to have originated with the

Italians. They grew out of their business transactions, and in

many cases were so complicated as to require great skill and

judgment in their solution. They are interesting as presenting

the type of nearly all the questions of this kind found in modern

text-books.
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SECTION II.

THE PROGRESSIONS.



I. Arithmetical Progression.

II. Geometrical Progression.



CHAPTER I.

ARITHMETICAL PROGRESSION.

IN
comparing numbers we perceive that we may have a series

of numbers which vary by a common law
;
such a series is

called a Progression. The more general name for such a suc-

cession of terms is Series, which is used to embrace every

arrangement of quantities that vary by a common law, how-

ever simple or complicated, and whether expressed in numbers

or in algebraic or transcendental terms. The term Progression

is preferred in arithmetic, and is restricted to the arithmetical

and geometrical series.

The constant relation existing between two or more succes-

sive tei-nis of the series is called the Law of the progression.

In the series 1, 2, 4, 8, etc., each term equals the preceding

term multiplied by 2, and this constant relation constitutes the

law of the series. It is evident that the law which connects

the terms of a series may be greatly varied, and that we may
thus have a large number of different kinds of series. The

only two generally treated in arithmetic are the Arithmetical

and the Geometrical series, or progressions.

Definition.—An Arithmetical Progression is a series of

terms which vary by a constant difference
;
as 2, 4, 6, 8, etc.

The difference between any two consecutive terms is called the

common difference. In the series given, the common difference

is 2. The common difference is sometimes called an arithmet-

ical ratio ; it is better, however, to restrict the use of the word

ratio to a geometrical ratio, and call this what it really is, a

difference.

(341)
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Special attention is called to the definition of an arithmetical

progression here presented. The definition usually found in

our text-books is, "An arithmetical progression is a series of

numbers which increase or decrease by a common difi'erence."

In the definition proposed the word vary is used to include

both the increase and the decrease of the terms; and this is re-

garded as an improvement upon the old definition. It has

already been adopted by two or three authors, and should be

generally introduced into our text-books on arithmetic.

Notation.—The English and American authors express an

arithmetical progression by writing the terms one after another

with a comma between them. The French, with more pre-

cision, employ a special notation for it. They place the sym-
bol, -i-, before the progression and the period (.) between the

terms. Thus Bourdon writes,

-r-2. T. 12. 1*7. 22. . . 4t. 52. bl. 62.

This method has been introduced into one or two American

text-books, and may, in time, be generally adopted, though the

tendency seems to be to adhere to the common form of expres-
sion.

Cases.—There are five quantities in an Arithmetical Progres-
sion

;
the Jirst term, the common difference, the number of

terms, the last term, and the sum of all the terms. If any three

of these are given, the other two can be found from them.

This gives rise to twenty different cases, in which any three

terms being given, the other two may be found. These cases

cannot all be solved by arithmetic, since some of them involve

the solution of a quadratic equation ; they are, however, very

readily treated by the principles of algebra. The two prit^cipal

cases in arithmetic are as follows:

1. To find the last term, having given the first term, the

common difference, and the number of terms.

2. To find the sum of the terms, having given the first term,
the last term, and the number of terms.

Method of Treatment.—The treatment of Arithmetical Pro-
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gression in arithmetic is very simple. We derive the rule for

finding the last term by noticing the law of the formation of a

few terms and then generalizing this law. Thus we notice that

the second term of an arithmetical progression equals the first

term plus once the common difference, the third term equals
the first term plus twice the common difference, etc.

;
hence we

infer that the last term equals the first term plus the product
of the common difference by the number of terms less one.

In finding the sum of the terms we take a series, then write

under this series the same series in an inverted order, then

adding the two series we see that twice the sum of the series

is the same as the sum of the extremes multiplied by the num-
ber of terms

;
and generalizing this we obtain the rule for find-

ing the sum.

In algebra we reason in the same way, except that we employ
general symbols, and use a general series instead of a special

one. Expressing the two fundamental rules in general formu-

lae, we can readily find the rest of the twenty cases by the alge-

braic process of reasoning. These two simple cases, I think,

should in arithmetic be expressed in the concise language of

algebraic symbols. Pupils who have not studied algebra will

have no difficulty in understanding them. The two rules of

arithmetical progression are briefly expressed thus:

1. Z = a+(n— 1).(Z; 2. « = (a+Z).^.

History.—Of the origin of the progressions and the methods

of treatment, but little is known. They were the object of the

particular attention of the Pythagorean and Platonic arithme-

ticians, who enlarged upon the most trivial properties of num-

bers with the most tedious minuteness. Directing their spec-

ulations, however, to the mysterious harmonies of the physical
and intellectual world, they passed over, as unworthy of no-

tice, the solutions of those problems which naturally arise from

these progressions, and which appear in such numbers in Hin

doo, Arabic, and modern European books on Arithmetic.
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Yery little is known concerning the origin of the familiar

problems usually found under this subject. The problem,
" How many strokes do the clocks in Venice strike in 24

hours?" is supposed to be of Venetian origin. The following
familiar problem is attributed to Bede :

" There is a ladder

w:ith 100 steps ;
on the first step is seated one pigeon, on the

second step two pigeons, on the third step three, and so on

increasing by one each step; tell, who can, how many pigeons
were placed on the ladder." The celebrated problem,—"If
a hundred stones be placed in a right line, one yard apart
and the first one yard from a basket, what length of ground
must a person go over who gathers them up singly, returning
with them one by one to the basket ?"—though found in many
modern text-books, is very old, but its origin is not known.
The extraordinary magnitude of the numbers which result

from the summation of a geometrical series is well calculated

to excite the surprise and admiration of persons who are not

fully aware of the principle upon which the increase of the

terms depends ;
and examples are not wanting among the

earliest writers, where the rash and ignorant are represented
as being seduced into ruinous or impossible engagements.
The most celebrated of these is that which tradition has

represented as the terms of the reward demanded of an Indian

prince -by the inventor of the game of chess
;
which was a

grain of wheat for the first square on the chess board, two

grains for the second square, four for the third, and so on,

doubling continually to sixty-four, the whole number of

squares.

Lucas di Borgo solved the question, and found the result

to be 18446744073709551615, which he reduces to higher
denominations and finds it equal to 209022 castles of corn.

He then recommends his readers to attend to this result, as

they would then have a ready answer to many of those

ba7-bioni ignari de la arithmetica who have made wagers on
such questions, and have lost their money.



CHAPTER 11.

GEOMETRICAL PROGRESSION.

A
GEOMETRICAL PROGRESSION is a series of terras

which vary by a common multiplier ; as, 1, 2, 4, 8, 16, etc.

The common multiplier is called the rate or ratio of the pro-

gression ; thus, in the progression given, the rate is 2. The

ratfi: of the progression equals the ratio of any term to the pre-

-^eding term. When the progression is ascending, the rate is

greater iban a unit; when it is descending, the rate is less

than a unit. The rate is by most authors called the ratio of

the series; the reason for preferring the term rate will be

stated presently.

Notation.—The method of writing a geometrical progression,

generally employed by English and American authors, is the

same as that for an arithmetical progression. The French

authors, however, distinguish it from an arithmetical progression

by a special notation. They place the symbol ~ before the

series, and separate the terms by a colon (:) ; thus,

-H- 2 : 4 : 8 : 16 : 32 : 64 : 128.

The Bate.—The constant multipler, as before stated, is gen-

erally called the ratio of the series. The term rate, it is

thought, is much more appropriate and precise. The objection

to the word ratio is that, in the comparison of numbers, the

ratio is the quotient of the first term divided by the second,

while the rate of a series is equal to any term divided by the

previous term
; hence, there is a seeming contradiction of the

correct meaning of the term ratio. This contradiction may be

only seeming, but to avoid all difficulty in this respect, it will

15* (345)
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be better to use a term which is appropriate and not liable to

misconception. Rate seems to be an appropriate word, since

we naturally speak of the rate of increase or decrease of any-

thing; and by the rate of a progression, we mean its rate of

increase or decrease.

The French mathematicians make this distinction between

ratio and rate
; they use the word rapport, ratio, in proportion,

and raison, rate, in progression. Bourdon says,
" The con-

stant ratio, which exists between any term and that which imme-

diately p'^'ecedes it, is called the rate of the progression.
"^ By

rapport they seem to mean about what we do by ratio
;

it is

probably from the idea of produce, the ratio being the product
of the division. Their word raison seems to mean the same as

rate, taken probably from the idea of cause, the rate being the

law or cause of the terms being what they are.

The term ratio, as used in relation to a progression, has

given nse to a good deal of discussion and misapprehension.
Some writers who use the word have taken the pains to tell us

that they mean, not a direct, but an innerse ratio. Prof. Dodd

says, when we speak of the ratio of a geometrical progression

being 2, we mean that "the terms progress in a twofold ratio,

which simply means that each term has the ratio of 2 to the

preceding term ;" and similar remarks are made by other writers.

By using the word rate instead of ratio, all this difficulty and

misapprehension will be avoided. It is to be hoped, therefore,

that the term rate will be generally adopted in speaking of the

law of variation of a geometrical series.

Cases.—There are five quantities considered, as in arithmet-

ical progression ;
the first term, the rate, the number of terms,

the last term, and the sum of the terms. Any three of these

being given the other two can be derived from them, which

gives rise to twenty distinct cases. These cannot all be solved

* Ce ra/iport constant, qui existe entre un terme et celui qui le pr6c6cle

iinm6tliatement, se nomiue la Raison de la progression.—Bourdon's Arith-

metic, page 279.
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by arithmetic
;
the first fifteen are easily derived by common

algebra, and the other five readily yield to the logarithmic cal-

culus. The two cases generally given in arithmetic are the

following :

1. To find the last term, having given the first term, the rate,

and the number of terms.

2. To find the sum of the terms, having given the first term,

the last term, and the number of terms.

Treatment.—The general method of treatment in a geomet-
rical progression is the same as in an arithmetical progression;

and having been stated under arithmetical progression, need

not be repeated here. Several cases cannot be obtained in

arithmetic, since they require the solution of an equation. Four

cases cannot be solved by elementary algebra, as they depend

upon the solution of an exponential equation ;
and in obtaining

the numerical results we are obliged to make use of logarithms.

The two fundamental cases should, we think, in arithmetic be

expressed in the symbolic language of algebra; thus,—

1. Z=ar"-i: 2. S=-^^^.
r—1

The Infinite Series.—An Infinite Series is a series in

which the number of terms is infinite. In a descending pro-

gression the terms are continually growing smaller; hence if

the series be continued sufficiently far, the last term must be-

come less than any assignable quantity; and if continued to

infinity, the last term must become infinitely small.

In treating an infinite series, we regard this infinitely small

quantity as zero, or nothing. Thus, in finding the sum of a

descending series, we use the formula S^=-
;
and regarding

the last term as nothing, the term Ir disappears, and we have

S= or the sum of the terms of an infinite series descend-
1—r

ing equals the first term divided by 1 minus the rate.
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This reduction of the last term to zero presents a difficulty

not easily explained. The question arises, how can ihe last

term become zero ? At what point does a term become so

small that, when multiplied by the rate, the product shall be

nothing? To illustrate the difficulty, take the series 1, h, 5, k'

etc., in which the rate is h Now if this series be continued to

infinity, the last term is supposed to be zero. This supposition

seems to involve the idea that the term just before the last is

so small that | of it is nothing. Who can conceive of such a

term ? Who can trace the series down through all the differ-

ent values, until we reach a term so small that one-half of it is

nothing? This of course cannot be done. The mind shrinks

from the effort; it is unable to grasp the infinitely small. In-

deed, neither the infinitely great nor the infinitely small can be

positively conceived
;
an infinite quantity and an infinitesimal

are both beyond the grasp of the human mind.

What shall we do then ? Shall we deny that the last term

is infinitely small, or zero? Certainly not: to assume that it

is not infinitely small involves a greater difficulty than the sup-

position that it is infinitely small. Fix upon auy term, how-

ever small, and we see that it can be continually divided, and

that the division will continue as long as there is a term to be

divided, and can only terminate when the term becomes too

small to divide, or zero. Hence, to conceive that the infinite

term is not zero, is to suppose that the division stopped when

it could have proceeded, which is absurd
; consequently, it is

absurd to suppose that the last term is not zero. The question

then stands thus: we cannot comprehend that the last term is

zero, and to conceive that it is not zero is absurd. We are

thus in the dilemma that we must believe either the absurd or

the incomprehensible. We cannot believe the absurd; we

rather accept the incomprehensible. We are therefore forced

to the conviction that the last term is zero, even though we

cannot fully conceive it to be so. We believe that which we

cannot fully understand, because not to believe it leads to an ah-
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ardity, and the mind is so constituted that it will accept the

ncomprehensible sooner than the absurd. We take it upon

faith; it is the place in science "where reason falters "and

faith accepts.

This method of considering the- subject presents an excellent

illustration of the operation of the intuitive power in many

questions of religious faith. I may not be able to comprehend
a first cause

;
but I know there must be one, or else I am in-

volved ill an absurdity, and the human mind cannot rest in the

absurd. It may be remarked that the point of difficulty hero

considered, is one that frequently occurs in mathematics. The

infinitely small is an important element in mathematical inves-

tigations. We make use of it in geometry, and in calculus it is

the fundamental idea upon which the science is based.

The most satisfactory method of removing any doubt that

one may have upon the assumption that the last term reduces

to zero, is to take a problem which may be solved by an infinite

series, and which can also be solved without it. If the result

obtained by supposing the last term to be zero, agrees with the

result otherwise obtained, the conclusion that the last term

is zero must be accepted, whether we can conceive it or not.

Such a problem is the following: "A hound and fox are 10

rods apart, and the hound pursues the fox; how far will the

hound run to overtake the fox, if the latter runs Jg as fast as

the hound ?"

Looking at this problem in one way, we see that when the

hound has run the 10 rods the fox has run 1 rod, and they
are then 1 rod apart. When the hound runs this rod, the

fox has run Jg- of a rod
;
hence they are then -^^ of a rod apart.

When the hound runs this Jg- of a rod, they are ^^ of J^, or y J-^

of a rod apart; hence the distance the hound will run to catch

the fox is correctly represented by the sum of the series 10 -f- 1

"^iV+r^?"!-] o^oQ "t" i oooo ~H^^^-' ^o ^"^^ infinite number of terms

The sum of this series, obtained by the method of infinite series,

which regards the last term as zero, equals 10-^(1—ro)~^-0-^ii>
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=10x^=11^ rods. Hence the hound runs Hi rods to catch

the fox.

The problem may also be solved by the following simple
method of analysis : By the conditions, ten times the distance

the fox runs equals the distance the hound runs
;
and this di-

minished by the distance the fox runs, is 9 times the distance

the fox runs, which equals what the hound gains on the fox,

or 10 rods, the distance they were apart; then once the dis-

tance the fox runs equals -L'J- of a rod, and 10 times the distance

the fox runs, which is the distance the hound runs, equals

10x^"-=i§^, or Hi- rods. Or, we may solve it even more

simply thus : the hound gains 9 rods in running 10, hence to

gain 1 rod he will run ^- of a rod, and to gain 10 rods, so as

to catch the fox, he will run 10 times V-, or ^4^=111 rods.

This result corresponds with that obtained by the summation
of the infinite series

;
hence the supposition involved in that

solution, that the last term of the series equals zero, must be

correct.

This problem is sometimes given as a puzzle, in which it is

said that since there is always one-tenth of the previous dis-

tance between them, the hound will never catch the fox. The

fallacy consists in inferring that because there is an infinite

number of successive operations, it must require an infinite

length of time to perform them.

A problem similar to this is the following : "A ball falls 8 feet

to the floor and bounds back 4 feet, then falling bounds 2 feet,

and so on; how far will it move before coming to rest?" Solv-

ing this, we find the distance to be 24 feet. It is sometimes

supposed in this problem, that the body will never come to

rest
;
this is a mistake, for though there will be, in theory at

least, an infinite number of motions, they will be accomplished
in a finite period of time. The reason of this is, that the infi-

nitely small motions are made in infinitely small periods of

time, the sum of which does not exceed a finite period.
It should be remarked that some writers maintain that the



GEOMETRICAL PROGRESSION. 351

results ia the infiaite series are not absolutely correct, but are

merely approximations; thus, that the sum of the series ^+j+g
-j-etc, is not absolutely 1, but only approximately so

;
in other

words, that all we can affirm concerning it is that it comes

nearer and nearer to 1 as we increase the number of terms,

though it can never reach 1. Unity is the limit towards which

it is always approaching, which it never can exceed, and indeed,

which it never can reach. This conception of the subject is

attended with difficulties. It would seem to lead to the con-

clusion that in the case of the " fox and hound problem," given

above, the hound would never catch the fox
; unless, as a boy

once remarked,
" he gets near enough to grab him." So in the

elastic ball dropped upon a pavement ;
if the result is only ap-

proximately true, does it not follow that the ball never comes

to rest, but continues bounding forever? Here, as in many
other cases, implicit faith in the incomprehensible is more sat-

isfactory than a timid skepticism.

It will be interesting to notice that the two different series,

Hi+aV+sV+etc, and^+l+iV+^V+etc, are each equal to

the same fraction ^. It is also an interesting truth that the

sum of the series beginning with |, and decreasing at the rate

of ^, is just equal to 1.
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CHAPTER I.

NATURE OF PERCENTAGE.

PERCENTAGE
is a process of computation in which the

basis of the comparison of numbers is a hundred. The

same idea may also be expressed more briefly in the definition,

Percentage is the process of computing in hundredths.

The former definition was first presented in one of the author's

arithmetical works. Up to this time no definition had been

given of Percentage as a process of arithmetic. In the text-

books, the word was merely defined as meaning so many of a

hundred. Soon after this publication appeared, one or two

other authors adopted a definition similar to the one given

above, presenting the subject as a department of the science
;

and in time, it is presumed, all will define it as a process of

arithmetic.

It will be readily seen that Percentage has its origin in the

third division of the science of arithmetic; namely. Comparison.
We may compare numbers and determine their relations with

respect to their common unit or basis. This is the first and

simplest case of comparison, and gives rise to Ratio and Pro-

portion. We may also compare numbers with respect to some

number agreed upon as a basis of comparison, and develop
their relations with respect to this basis. When this number

is one hundred, we have the process of Percentage. It is thus

seen that the idea of the subject presented in the definition

given above is correct.

Percentage originated in the fact of the convenience of esti-

mating by the hundred, in a decimal scale. It derives its im-

(355)
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portauce and has received so full a development, partly at least,

from the fact of our having a decimal currency. It occupies a

more prominent place in American than in English text-books,

where the money system is not decimal. Its principal use is in

its application to business transactions relating to money, as

will be seen in the various ways in which it is employed. It

admits, however, of a purely abstract development, entirely

independent of concrete examples ;
and is, therefore, a process

of pure arithmetic.

Quantities.—Percentage embraces four distinct kinds of quan-

tities, the base, the rate, the percentage, and the amount or

difference.

The Base is the number on which the percentage is estimated.

The Rate is the number of hundredths of the base. The Per-

centage is the result of taking a number of hundredths of the

base. The Amount or Difference is the sum or the difference

of the base and percentage.

The Amount and Difference are the same kind of quantities,

and it would be well, in Percentage, to have some one term

which would include them both. In several of the applications

we have such a word
;

as selling price in Profit and Loss,

proceeds in Discount, etc. The expression Resulting Number
has been used, but this is a little awkward and inconvenient.

The term Proceeds, meaning that which results or comes forth,

I have sometimes thought of adopting, and indeed have adopted

in one of ray works. Some term, in place of amount and

difference as used in percentage, is a scientific necessity, and

Proceeds is recommended.

The Rate was originally expressed as a whole number, and

the methods of op^eration based upon such expression. Latterly

it is becoming the custom to repi'esent the rate as a decimal,

and to operate with it as such. This is much the better way,
and will probably become universal. It gives greater simplicity

to the rules, makes the treatment more scientific, and is quite

as readily understood by pupils. It may be remarked that
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the definition of the rate will vary according to which of these

forms is taken. The detinition above given regards the rate as a

decimal.

It will thus appear that there is a slight distinction between

the term Rate and the expression the rate per cent. Per cent.

means by the hundred ; rate per cent, means a certain number

of or by the hundred ; while Rate means a certain number of
hundredths. When money is loaned at 6 per cent, the rate

per cent, is 6
;
but the Rate is .06. Thus Rate and rate by the

hundred, are about identical in meaning. We may conse-

quently define the Rate to be the number by which we multiply

the base in order to obtain any required per cent, of it; and

this is what is intended in the definition,—The rate is a num-

ber of hundredths of the base.

Cases.—It has been a question among arithmeticians under

how many cases Percentage should be presented. There being

four distinct classes of quantities
—

five, if like some authors we

regard the amount and difference as distinct—any two of which

being given, the others may be found, it will be seen that there

are quite a large number of possible theoretical cases. What is

the simplest and most scientific classification of these various

cases? In other words, what are the general cases of Per-

centage? It has been quite customary to present the subject

under six distinct cases, and this affords a very practical view

of the subject. Authors, however, have not been uniform in

their treatment. I believe that the best way is to present the

subject under three general cases, each of which will contain

two or three special cases, as we regard the amount and differ-

ence as one or two classes of quantities. Uniting the amount

and difference under one general term, as p7'oceeds, we shall

have three general cases, each including two special cases,

making six cases in all; regarding the amount and dfference
as two distinct quantities, we shall have three special cases

under each general case, making nine cases in all.

These three general cases may be formally stated as follows:
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1. Given, the base and the rate, to find the percentage and

the proceeds.

2. Given, the base and either the percentage or the proceeds,

to find the rate.

3. Given, the rate and either the percentage or the proceeds,

to find the base.

Treatment.—There are two distinct methods of treatment in

Percentage, which may be distinguished as the Analytic and the

Synthetic methods. The Analytic Method consists in reducing
the rate to a common fraction, and taking a fractional part of

the base for the percentage, and operating similarly in the other

cases. It differs particularly from the other method in the

solution of the second and third cases, as will be seen by the

solution of a problem. It is the method for mental analysis,

and is especially suited to the subject of Mental Arithmetic.

To illustrate the analytic method, take the problem, "What is

25% of 360?" We reason thus: 25% of 360 is y%V or 4 of

360, which is 90. To find the base take the problem,—" 90 is

25% of what number?" The solution is,—If 90 is 25%,, or

^, of some number, ^ of the number is 4 times 90, or 360. The

case of finding the rate per cent, is solved in a similar manner.

The Synthetic Method consists in preserving the rate in the

form in which it is presented, and operating accordingly. In

the synthetic method there are two ways of operating : the

first consists in using the rate as a whole number, and dividing

or multiplying by a hundred ; the second operates with the

rate in the form of a decimal, according to the principles of

decimal multiplication and division. There has, for several

years, been a tendency towards the latter method, and arithme-

ticians are now generally agreed in its favor.

This latter method is greatly to be preferred on account of

its simplicity and scientific character. The difference may
be shown by a rule for one of the cases. When the rate is

used as a whole number, the rule for finding the percentage is,

—Multiply the base by the rate, and divide the product by 100
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When the rate is used as a decimal, the rule is,
—Multiply the

base by the rate. A similar dilference will be found to exist in

the rules for all the cases. Another consideration in favor of

using the rate as a decimal is the ease with which the rules for

the other cases are derived from the first. Assuming that the

percentage equals the base multiplied by the rate ; it immedi-

ately follows that the base equals the percentage divided by
the ra.te, or the rate equals the percentage divided by the base.

To illustrate the method preferred, suppose we have the

problem in Case 1.,—"What is 25% of 360?" We would rea-

son thus : Twenty-five per cent, of 360 equals 25 hundredths

times 360, or 360 X. 25, which by multiplying we find to be 90.

To illustrate Case 2, take the problem,
" 90 is 25% of what

number?" We would solve this as follows: If 90 is 25% of

some number, then some number multiplied by .25 equals 90;

hence this number equals 90 divided by .25, or 90-=-. 25, which

by dividing we find is 360.

To illustrate Case 3, take the problem,—" 90 is what

per cent, of 360 ?" The solution is as follows : If 90 is some

per cent, of 360, then 360 multiplied by some rate equals 90
;

hence the rate equals 90 divided by 360, or 90^360, which is

.25, or 25%.
The solution of problems including the proceeds is quite

similar, and need not be presented here in detail. The particu-

lar method of explanation will be found in my Higher Arith-

metic.

Formulas.—These synthetic methods and rules may all be

presented in general formulas, as follows:

Case I. Case II. Case III.

1. bxr=p 1. p-^r=b 1. p-T-b=r
2. bx(l-{-r)=A 2. A^(l-\-r)=b 2. A^b=l-\-r
3. bxll—r)=D 3. X>^(l_r)=6 3. I)^b=l—r
The 2d and 3d formulas of each case may be united in one

;

thus, using P for proceeds, P=bx{l±r) ; 6=P-T-(l±r) ;

r=P-T-6—1. or 1—P-=-6.
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Applications.—The applications of Percentage are very ex-

tensive, owing to the great convenience of reckoning by the

hundred in financial transactions. These applications are of

two general classes; those not including the element of time, and

those which include this element. The following are the most

important of these two classes of applications :



CHAPTER 11.

NATURE OF INTEREST.

PERCENTAGE
embraces two general classes of problems,

—those that involve the element of time, and those that do

not involve this element. The most important application of

percentage into which this element enters is Interest
;
and in-

deed all such applications may be embraced under this general

term.

Interest may be defined as money paid, or charged for the

use of money. It is usually reckoned as so many units on a

hundred, and is thus included under the general process of Per-

centage. The sum upon which interest is reckoned is called

the Principal, in distinction from the interest or profit, which

is subordinate to it. The sum of the interest and principal is

called the Amount.

Interest is either Simple or Compound. Simple Interest is

that which is reckoned or allowed upon the principal only,

during the whole time of the loan. Compound Interest is

reckoned, not only on the sum loaned, but also on the interest

as it becomes due. Interest unpaid is regarded as a new loan

upon which interest should be paid.

Simple Interest.—In considering the subject of simple inter-

est, the primary object is to find the interest on a given princi-

pal for a given time and rate. Various methods have been

devised for the solution of this problem. The simplest in

principle and most natural, is to find the interest for one year

by multiplying the principal by the rate, and multiplying this

interest by the time expressed in years. The objection to this

10 (361)
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method in practice arises from the fact that the time is often

given in months and days, which frequently reduce to an incon-

venient fractional part of a year. This difficulty has led to a

modification of the rule proposed above, which is known as

the method of
"
aliquot parts."

The importance of a method that can be readily applied in bus-

iness, has led to the exercise of coosiderable ingenuity in order

to discover the shortest and simplest rule in practice. The

method now regarded as the simplest is that known as the

"six per cent." method. It is based on the rate of 6%, which h
the usual rate in this country, and may be expressed as follows :

Gall half the number of months cents, and one-sixth of the

number of days mills, and multiply their sum, which will be

the interest of $1 for the rate and time, by the principal.

Another way of stating this rule is,
—Regard the months as

cents, and one-third of the days as mills, and multiply their

sum by one-half of the principal. For short periods a modi-

fication of the rule, which may be popularly expressed,—Mul-

tiply dollars by days and divide by 6000, is the most convenient

in practice, and is very generally employed by business men.

There are also many other methods of working interest which

need not be stated here.

The general method of finding the interest of a principal may
be expressed in a general formula as in Percentage. The gen-

eral foi'mula is i=ptr, which is readily remembered by the sen-

tence which it suggests— "I equals Peter." The several cases

which arise in interest can be readily derived from this funda-

mental formula. These several rules may be expressed as fol-

lows:
1. i=ptr. 3. t=i-^pr.
2. pz=i-r-tr. 4. r= i-^pt.

It is objected to the "six per cent, method," that it gives too

great an interest, since it reckons only 360 days in a year ;
and

it has been suggested that to compute the interest on a loan by
this method would be to take usury, and in some states would
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result in a forfeiture of the debt, or some other penalty. This

seems like putting a very nice point on the matter, though it is

true that the six per cent, method gives a little move interest

than when we reckon 365 days to the year. To obtain exact

interest, we find the interest for the years, multiply the interest

of one year by the number of days, and divide by 365, and take

the sum of the two results. A full presentation of the applica-

tions of interest to business and the latest methods of treatment

may be found in the author's Higher Arithmetic.

Rates of Interest.—It is a noteworthy fact that the propriety

of receiving interest for the use of money, has been questioned.

Indeed, the practice has been censured in both ancient and

modern times as an immorality and a wrong to society. It

may seem that so absurd a notion hardly needs a passing no-

tice, for it is clear that a similar objection may be made to the

charge of rents, or even to profits of any kind. A capitalist

may invest his money in business and receive a certain return

for it
;
and if he chooses to let some one else invest it and have

the care of such investment, it is clear that he should receive

some remuneration for surrendering to another the profit he

might have made himself. Again, the borrower can with cap-

ital secure a large return of profit in business, and is not only

entirely willing to pay for the use of such capital, but is in

equity under obligations to do so. Interest on loans is, there-

fore, a benefit to both the borrower and lender; and should

therefore be both required and allowed.

The rate of interest is determined strictly by the principle

of competition. When the capital to be invested exceeds the

demands of borrowers, the rate of interest is low
;
when the

demand is in excess of the capital, the rate will be high. The

rate will vary also with the security of the loan
;
thus the rate

on landed mortgages is usually lower than on property less

secure and certain, and consequently state loans are usually

made at low rates. A lender assumes that he must be paid

something for the risk of a loan, and that the greater the risk



364 THE PHILOSOPHY OF ARITHMETIC.

the greater the charge. It is oq this principle that high inter-

est is often said to be synonymous with bad security. A high
rate of interest may also be due to large profits on capital. In

a community where the returns on capital are large, as in rich

mining districts for instance, all who have capital would desire

to invest, and consequently the difficulty of obtaining a loan

would increase and higher rates would obtain. In such cases

the opportunity for large gains by the capitalist and the in-

creased demand by the borrower would both conspire to increase

the rate of interest.

The rates of interest have usually been regulated by govern-
ments. This action is founded upon a variety of reasons. It

has been ai-gued that lenders are unproductive consumers of

part of the profit which is produced by labor. Such a notion

leaves out of sight, however, that production is impossible
without capital, and that capital is accumulated and employed
with a view to profit. It is also held that if the state does not

regulate rates, borrowers will be open to fraud and extortion

on the part of unprincipled lenders. This is the principal con-

sideration in favor of state control of interest rates
;
and yet

there,are valid if not unanswerable objections to it. It is, of

course, the duty of the government to protect the citizen against

usury and fraud
;
but most of the considerations in favor of

regulating rates of interest will apply to the regulation of the

prices of food, land, wages, etc. It seems to be a growing
opinion that capital should seek investment at rates determined

by natural laws of demand and supply, as the prices of other

property are regulated, and not be controlled by legislative en-

actment.

Historical.—The payment of interest on money has been
the custom from very early times. We learn from the New
Testament that it was paid on bankers' deposits in Judea

though the Jews were forbidden by the laws of Moses to exact

interest from one another. In Europe, interest was alternately

prohibited and allowed, the church being generally hostile to
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the practice. In Italy, the trade in money was recognized,

and the custom of borrowing and lending was common. In

England, it was first sanctioned by the Parliament in 1546, the

rate being fixed at 10 per cent.; but in 1552 it was again pro-

hibited. Mary, however, borrowed at 12 per cent., which ap-

pears to have been the usual rate at that period at Antwerp.
In 1571, it was again made legal at 10 per cent., a rate at

which the Scotch Parliament fixed it in 1587. The rate fell at

the beginning of the seventeenth century, James I. having

borrowed in Denmark at 6 per cent. In 1G24, it was reduced

to 8 per cent; in 1051, to 6 per cent.; in 1724, to 5 per cent.,

at which legal rate it remained until all usury laws were re-

pealed, an event which occurred only a few years ago. In

1773, it was limited to 12 per cent, in India. In 1660, the rate

in Scotland and Ireland was from 10 to 12 per cent.; in France

7 per cent.; in Italy and Holland 3 per cent; in Spain from 10

to 12 per cent.; in Turkey 20 per cent; but the East India

Company, while -the legal rate was 6 per cent., continued to

borrow at 4 per cent.

The term Usury, meaning the
" use of a thing," was origi-

nally applied to the legitimate profit arising from the use of

money, and meant merely the taking of interest for money.

Laws were established in various countries fixing the amount

of interest or usury, and the evasion of these laws by charging

excessive usury, led to the present use of the term. . By the old

Iloman law of the Twelve Tables, the rate of interest allowed

as legitimate was the usura centesima, which was strictly 1

per cent, a month
;
and has been supposed by some to have

amounted to 12, and by others to 10 per cent a year. The

Roman laws against excessive usury were frequently renewed

and constantly evaded, and the same is true of other countries.

In England, during the reign of Henry VIII., 10 per cent was

allowed; by 21 James I., 8 percent; by 12 Charles II., 8 per

cent; by 12 Anne, 5 per cent Subsequently to the passage

of the latter act, the usury laws were relaxed by several
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Statutes, and tbey were ultimately repealed in 1854. Any rate

of interest, however high, may now be legally stipulated for,

but 5 per cent, remains the legal interest recoverable on all

contracts, unless otherwise specified.

Much concern has been shown by governments in attempt-

ing to fix rates of interest, and prevent usury. The legislation

of Solon relieved the Athenian mortgagors; and during many
years of the Roman Republic, the regulation of loans, the limi-

tation of the rate of interest, and the relief of insolvent debtors,

formed a perpetual topic of agitation, and finally of legislation.

In most of the European countries the administration has

busied itself, from time to time, in fixing rates of interest, and

in denouncing or forbidding usurious bargains. Such legisla-

tion has, however, proved vain
;
for while the most stringent

laws were in force, high rates of interest on loans were com-

mon, the law being incompetent to provide against evasion of

the statute.

The legal rate of the United States government is 6 per

cent. Each State fixes its own rate, and attaches its special

penalties for usury. In several of the States the usury laws

have been repealed, and the general tendency is to allow an

open market to the investment of capital.

Origin of Methods.—The importance of a knowledge of the

principles of interest, discount, etc., led arithmeticians to notice

these subjects at an early day. Interest was early divided

into Simple and Compound. Compound Interest was properly

called usura, and was rarely practised in the transactions of

merchants with each other. Stevinus terms compound interest,

interest prouffitable, or celuy qu'on ajouste au capital, whilst

the corresponding discount is termed interest dommageable, or

celuy qu^on soiibstrait du capital.

Problems in simple interest were by Tartaglia and his pre-

decessors, solved by the Rule of Three. In calculating the

interest of a sum from one day to another, the determination

of the number of days in the interval seemed somewhat embar.

I
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rassing, and Tavtaglia gives a rule for this purpose of which he

seems somewhat proud. In passing from one city of Italy to

another an additional source of embarrassment presented itself

in the differwit days on which the year was supposed to com-

mence, being reckoned at Venice from the 1st of March, at

Florence from the Annunciation of the Virgin, and in most

other cities of Italy from Christmas day.

Tartaglia has noticed five methods of finding the amount of

a sum of money at compound interest. Suppose the question

to be to find the amount of L300 for 4 years at 10 per cent, a

capo d^anno; the first method is by the following four state-

ments :

100 : 300 : : 110 : 330
100 : 330 : : 110 : 363
100 : 363 : : 110 : 399/.;^
100 : 399^3^: : 110 : rS2-^-^\.

The second method merely replaces 100 and 110 by 10 and

11 in the proportion ;
the third, which is his own method, mul-

tiplies 300 four times successively by 11, and divides the last

product by 10,000 ;
the fourth consists in adding four suc-

cessive tenths to the principal; the last in calculating the

amount for LI 00, and then finding the amount of L300, or any
other proposed sum, by a simple proportion.

With the exception of discount at compound interest and its ap-

plication to correct in part the conclusion respecting the values

of annuities, there are few, if any, other questions of compound
interest which Tartaglia and his contemporaries can be said to

have resolved. A very natural difficulty arose in the solution

of questions of this kind :

" What is the interest of 100 for 6

months, interest being reckoned at the rate of 20 per cent, per
annum ?" Lucas di Borgo and others made out that this would

be 10
;
that is, they calculated that, simple interest only being

allowed, it was a matter of indifference into how many por-

tions of time the whole period was divided, whether into months

or half-years.

Lucas di Borgo has an article on calculating tables of inter-
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est in which he speaks of their great utility, thereby showing
that such tables were in use in Italy, although no work of that

date containing them is known to be extant. The first com-

pound interest tables now known are those which are presented

by Stevinus in his arithmetic, which give the present worth of

10,000,000 from 1 to 30 years, in sixteen tables, the interest

being reckoned successively from 1 to 16 per cent., and in eight

other tables, where the interest is differently reckoned, accord-

ing to the custom of Flanders.

The origin of the various modern methods of calculating in-

terest is not known. The method by "aliquot parts" is a fav-

orite rule of the English arithmeticians, and probably originated

with them. The "
six per cent, method" has been attributed

to a Mr. Adams, author of a work on arithmetic. The partic-

ular form of the six per cent, method popularly stated, "multi-

ply dollars by days and divide by 6000," was used among
business men before it was introduced into any arithmetic, and

is presumed to have had its origin in some counting-house, but

it is not known where.
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CHAPTER I.

NATURE OF THE SUBJECT.

'T'^HE Theory of Numbers, as generally presented, embraces

J- the classification and investigation of the properties of

numbers. This subject has engaged the attention and enlisted

the talents of many celebrated mathematicians. The ancient

writers, who did little for the development of arithmetic as a

science or an art, spent much time in theorizing upon the pro-

perties of numbers. The science of arithmetic with them was

mainly speculative, abounding in fanciful analogies and mys-

terious properties.

Pythagoras attributed to numbers certain mystical properties,

and seems to have conceived the idea of what are now termed

Magic Squares. Aristotle, amongst other numerical specula-

tions, noticed the practice, in almost all nations, of dividing

numbers into groups of tens, and attempted to give a philo-

sophical explanation of the cause. The earliest regular system

of numbers is that given by Euclid in the Yth, 8th, 9th, and

10th books of his
"
Elements," which, notwithstanding the

embarrassing notation of the Greeks, and the inadequacy of

geometry to the investigation of numerical properties, is still

very interesting, and displays, like all other parts of the same

celebrated work, that depth of thought and accuracy of demon-

stration for which its author is so eminently distinguished.

Archimedes, also, paid particular attention to the powers and

properties of numbers. His tract, entitled
"
Arenarius," con-

tains a method of multiplying and dividing which bears a con-

siderable analogy to that which we now employ in multiplication

(371)
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and division of powers, and which some modern writers have

thought inculcated the principles of our present system of loga-
rithms. Before the invention of algebra, however, but little

progress could be made in this branch of the science
;
accord-

ingly we find that comparatively few principles had been dis-

covered until the time of Diopbantus. This eminent mathema-

tician, who is the author of the most ancient existing work on
the subject of algebra, presents many interesting problems in

the properties of numbers
; but, owing to the difficulties of a

complicated notation and a deficient analysis, little progress
was made, compared with the advance of modern times.

From the time of Diophantus the subject remained unnoticed,
or at least unimproved, until Bachet, a French analyst, under-

took the translation of Diophantus into Latin. This work,
which was published in 1621, contained many marginal notes

of the translator, and may be considered as presenting the first

germs of our present theory. These were afterward consider-

ably extended by Format, in his posthumous edition of the

same work, published in 1670, which contains many of the most

elegant theorems in this branch of analysis ;
but they are gen-

erally left without demonstration, which he explains in a note

by saying that he was preparing a treatise of his own upon
the subject. Legendre accounts for the omission by saying
that it was in accordance with the spirit of the times for learned

men to propose problems to each other for solution. They
generally concealed their own method in order to obtain new

triumphs for themselves and their nation
;
and there was about

this time an especial rivalry between the English and French

mathematicians. Thus it has happened that most of the demon-

strations of Format have been lost, and the few that remain

only make us regret the more those that are wanting.
The most of these theorems remained undemonstrated until

the subject was again renewed by Euler and Lagrange. Euler,
in his "Elements of Algebra," and some other publications, de-

monstrated many of the theorems of Fermat, and also added
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some interesting ones of his own. Lagrange, in his additions

to Euler's Algeln-a and in other writings, greatly extended the

theory of numbers by the discovery of many new properties.

The subject has received its largest contributions, however, from

the hands of Gauss and Legendre.

Legendre, in his great work,
" Essai sur la Theorie des

Nombres," was the first to reduce this branch of analysis to a

regular system. Gauss, in his
"
Disquisitiones Arithmeticse,''

opened a new field of inquiry by the application of the proper-

ties of numbers to the solution of binomial equations of the

form, 0,-"—1 —0, on the solution of which depends the division of

the circle into n equal parts. This solution he accomplished in

several partial cases
;
whence the division of the circle into a

prime number of equal parts is performed by the solution of

equations of infei"ior degrees; and when the prime number is

of the form 2"-f 1 the same may be done geometrically—a prob-

lem that was far from being supposed possible before the publi-

cation of the work mentioned.

The most celebrated English work on the subject is that of

Peter Barlow, published in 1811, from the preface of which

most of the preceding historical facts have been culled. It pre-

sents a clear and concise statement of the principles of the sub-

ject, and contains several original, contributions, among which

may be mentioned a demonstration of Fermat's general theorem

on the impossibility of the indeterminate equation a.'"=fc2/"=2",

for every value of n greater than 2. This demonstration, how-

ever, has been tacitly ignored by mathematicians
;
and the

French Institute and other learned societies have continued

to propose the problem for solution.

Almost every modern mathematician of eminence, however,

has contributed more or less to the advancement of the theory.

In the collected works of Euler, Gauss, Jacobi, Cauchy,

Dirichlet, Lagrange, Eiseustein, Poinsot, and others, numerous

memoirs on the subject will be found; whilst the recent mathe-

matical journals and academical transactions contain researches
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in the same field, by all the ablest living mathematicians. One

of the most complete treatises on the subject is that of Prof.

H. J. S. Smith in the article entitled,
"
Reports on the Theory

of Numbers," which commenced in the Transactions of the

British Association for 1859. It embraces a lucid, critical his-

tory of the subject, rendered doubly valuable by copious refer-

ences to the original sources of information.

It will be seen from this brief statement that the subject of

the theory of numbers is one of great magnitude and difficulty,

requiring the application of the principles of algebra for its de-

velopment. It is, therefore, not appropriate to treat of it in

this work, except so far as to show its logical relation to the

general divisions of the science, and to present a few simple

properties that may be readily understood by means of the or-

dinary principles of arithmetic. These will be interesting to

young arithmeticians, and perhaps the means of cultivating a

taste for a more thorough study of the subject.

The subjects to which the attention of the reader will be

briefly directed are the following:

1. Even and Odd Numbers.

2. Prime and Composite Numbers,

3. Perfect, Imperfect, etc.. Numbers.

4. Divisibility of Numbers.

5. Divisibility by the Number Seven.

6. Properties of the Number Nine.



CHAPTER 11.

EVEN AND ODD NUMBERS.

NUMBERS
have been divided into many different classes,

founded upon peculiarities discovered by investigating

their properties. The series 1, 2, 3, 4, etc., is called the series

of Natural Numbers. The Natural Numbers are classified

with respect to their relation to the number two, into Odd and

Even numbers. They are also divided into two classes with

respect to their composition, called Prime and Composite
numbers. Composite Numbers are divided into two classes,

Perfect and Imperfect numbers, this classification being based

upon the relation of the numbers to the sum of their factors.

Imperfect Numbers are also divided into two classes with re-

spect to the numbers being greater or, less than the sum of their

factors. Numbers which are equal each to the sum of the di-

visors of the other, are called Amicable Numbers. A few re-

marks will be made on each one of these classes.

Of the various classes of numbers, the simplest and most

natural division is that of Even and Odd numbers. This di-

vision is founded upon the relation of numbers to the number

2. Eveyi numbers are those which are multiples of 2
;
Odd

numbers are those which are not multiples of 2. In the series

of natural numbers the increase is by a unit
;
in the series of

even numbers the scale of increase is dual. The former arise

from counting by I's, beginning with the unit
;
the latter in

counting by 2's, beginning with the duad. The even numbers

are divided into the oddly even numbers, 2, 6, 10, 14, etc.; and

the evenly even numbers, 4, 8, 12, 16, etc. The odd numbers

are divided into the evenly odd numbers 1, 5, 9, 13, etc; and

the oddly odd numbers, 3, T, 11, 15, etc.
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The formula for the eveu numbers is 2n] the formula for the

odd numbers is 2?i+l. In the oddly eveu numbers n is an odd

number; in the evenly even numbers?! is an even number. In

the evenly odd numbers n is even
;
in the oddly odd numbers

n is odd. The evenly odd numbers are of the form 4?i+ 1
;
the

oddly odd numbers are of the form 4n-f-3.

There are many interesting principles relating to even and

odd numbers, a few of which will be stated.

1. Every prime number except 2 is an odd number.

2. The differences of the successive square numbers produce
the odd numbers.

3. The sum or difference of two even numbers or two odd

numbers is an even number.

4. The sum or difference of an even number and an odd num-

ber is odd.

5. The sum of any number of even numbers is even
;
the

sum of an even number of odd numbers is even, and the sum
of an odd number of odd numbers is odd.

6. Theproduct of two even numbers is even; of two odd num-

bers is odd
;
of an even number and an odd number is even.

7. The quotient of an even by an odd number, when exact,

is even; the quotient of an odd by an odd, when exact, is odd;

the quotient of an even by an even, when exact, is either even

or odd.

8. An odd number is not exactly divisible by an even num-

ber, and the remainder is odd.

9. If an even number is not exactly divisible by an even

number, its remainder is even.

10. If an even number is not exactly divisible by an odd

number, then when the quotient is even the remainder is even,

and when the quotient is odd, the remainder is odd.

11. If an odd number is not exactly divisible by an odd

number, then when the quotient is odd the remainder is even,

and when the quotient is even the remainder is odd.

12. If an odd number divides an even number, it will also
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divide one-half of it
;

if an even number be divisible by an odd

number, it will be divisible by double that number.

13. Any power of an even number is even
;
and conversely

the root of an even number which is a complete power is even.

14. Any power of an odd number is odd
;
and conversely

the root of an odd number which is a complete power is odd.

15. The sum or difference of any complete power and its root

is even.

These principles can be readily proved by the ordinary meth-

ods of arithmetical reasoning. To illustrate, take the third

principle, the reasoning of which is as follows : Two even

numbers are each a number of 2's, hence their sura will be the

sum of two different numbers of 2's, which must be a number

of 2's, and their difference will be the difference between two
d'lStirent numbers of 2's, which is also a number of 2's. In add-

ing two odd numbers we will have a number of 2's-|-l, added

to another number q/'2's-f 1, which will give us a number of
2's+ 2, or an exact number of 2's, etc.

The simplest method is by using the general notation of al-

gebra. Thus in the given principle, these two even numbers^

will be represented by 2n and 2n'
;
their sum will be 2/i-l-2n',

or 2 {n-\-n'), which is of the form of 2n, and is thus even
;
their

difference will be 2n—2k', or 2{n—n'), which is of the form of

2n, and is even. The two odd numbers are of the form 2n-|-l

and 2/i'4-l, and their sum is 2 {n-\-n'-\-\), which is of the form

of 2n, and even
;
their difference is 2n—2??', or 2 {n—n'), which is

evidently even. All the other principles may be demonstrated

in a similar manner.



CHAPTER III.

PRIME AND COMPOSITE NUMBERS.

THE
most celebrated classification of numbers is that of Prime

and Composite. This classification is with respect of their

formation by multiplication or the possibility of their being re-

solved into factors. The Composite number is one which can

be produced by the multiplication of other numbers
;
the Prime

number is one which cannot be produced by the multiplication

of other numbers. The distinction may be regarded as having
reference to the dependence or independence of their existence.

The composite number is regarded as deriving its existence

from other numbers which make it
;

the prime number does

not derive its being from any other numbers, but is indepen-
dent and self-existent.

Perhaps no subject in arithmetic has received more attention

from mathematicians than that of Prime and Composite Numbers.
The object has been to discover some general method of find-

ing prime numbers, and of determining whether a given num-

ber is prime or composite. Such a method, though laboriously

sought for by the best mathematical minds, has not, beyond a

certain limit, been discovered.

The problem of ascertaining prime numbers was discussed

as far back as the days of Eratosthenes, a mathematician of

Alexandria, distinguished also as having first conceived the

plan of measuring the earth. He invented a method of obtain-

ing primes by excluding from the series of natural numbers

those that are not prime, and thus discovering those that are.

This method consisted in inscribing the series of odd numbers

upon parchment, and then cutting out the composite numbers,

(378)
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and leaving the primes. The parchment, with its holes, resem-

bled a sieve ; hence the method is called Eratosthenes' sieve.

His method may be illustrated as follows:

Suppose we write the series of odd numbers from 1 to 99 in-

clusive. Since the series increases by 2, the third term from

3 is 3-1-3 X 2, which is divisible by 3; hence every third term

is divisible by 3, and is therefore composite. In a similar

manner we see that every fifth term after 5 is divisible by 5,

and therefore composite ;
and every seventh term after 1 is di-

visible by 7, and therefore composite. Cutting out these com-

posite numbers, we have all the prime numbers below 100. By
this method, assisted by some mechanical contrivance, Vega
computed and published a table of prime numbers from 1 to

400,000.

This method is, however, very tedious and inconvenient, and

mathematicians have earnestly sought for properties of prime and

composite numbers to guide them in ascertaining primes. The

following principles are useful in discovering or determining

prime numbers:

1. All prime numbers except 2 are odd, and consequently
terminate with an odd digit. The converse of this, that all odd

numbers are prime, is not, however, true.

2. All prime numbers, except 2 and 5, must terminate with

1, 3, 7, or 9
;

all other numbers are composite. This is the

series of odd digits with the omission of 5, since any number

terminating with 5, can be divided by 5 without a remainder.

3. Every prime number, except 2, if increased or diminished

by 1, is divisible by 4. In other words, every prime number,

except 2, is of the form 4?i ± 1. This will admit of demonstra-

tion.

4. Every prime number, except 2 and 3, if increased or di-

minished by 1, is divisible by 6. In other words, every prime

number, except 2 and 3, is of the form 6n ± 1. This may also

be demonstrated.

5. Every prime number, except 2, 3, and 5, is a measure of
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the number expressed, in common notation, by as many I's as

there are units, less one, in the prime number. Thus, 7 is a

measure of 111,111 ;
and 13 of 111,111,111,111.

6. Every prime number, except 2 and 5, is contained with-

out a remainder in the number expressed in the common nota-

tion by as manj^ 9's as there are units, less one, in the prime

number itself. Thus, 3 is a measure of 99
;

7 of 999,999; and

13 of 999,999,999,999.

7. Three prin,ie numbers c^not be in arithmetical progression,

unless their common difference is divisible by 6
; except 3 be

the first prime number, in virhich case there may be three prime

numbers in such progression, but in no case can there be more

than three.

8. This last principle is generally true, and may be stated

as follows : There cannot be n prime numbers in arithmetical

progression unless their common difference be divisible by

2.3.5.7. 11. ..«; except the case in which n is the

first term of the progression, in which case there may be n such

numbers, but not more.

Though we have no general method for finding prime num-

bers, there are several ways of detecting whether an assigned

number is or is not a prime. Several remarkable formulas have

been discovered which contain a large number of prime num-

bers. The formula a;'-+a;+41, by making successively a;=0,

1, 2, 3, 4, etc., will give a series 41, 43, 47, 53, 61, 71, etc., the

first forty terms of which are prime numbers. This formula is

mentioned by Euler in the Mejnoirs of Berlin, 1772. Of the

two formulas a;'+a;+17, and 2a;'+29, the former gives seven-

teen of its first terms primes, and the latter twenty-nine. Fer-

mat asserted that the formula 2'"-|-l is always a prime when

m is taken any term in the series 1, 2, 4, 8, 16, etc.
;
but Euler

found that 2''+l=64 1 x 6,700,417 is not a prime.

One of the most celebrated theorems for investigating primes

IS that discovered by Fermat and known as FermaVs Theorem.

The theorem may be stated thus: If p 6e a prime,the (p— l)^/i
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power of every number prime to p will, when diminished

by unity, be exactly divisible by p. Expressed in algebraic

language, we have the theorem P'— '— 1, is a multiple oi p when

p and P are prime to each other. Thus, 25"— 1 is exactly
divisible by 7. .

Fermat is said to have been in possession of a proof of the

theorem, though Euler was the first to publish its demonstra-

tion. Euler's first demonstration was a very simple one, and

is that usually given in the text-books. Amongst the other

demonstrations of the theorem, those given by Lagrange are

highly esteemed.

It has been demonstrated by Legendre (Essai sur la Theorie

des Nombres), that every arit^hmetical progression, of which the

first term and common difference are prime to each other, con-

tains an infinite number of prime numbers. It has been also

shown by him that if N represents any number, then will the

formula
N

ftJogfN—1.08366

represent the number of prime numbers that are less than N,

very nearly.

Another celebrated theorem is that invented by Sir John

Wilson, known as Wilson''s Theorem. This theorem may be

stated as follows : The continued product, increased by unity,

of all the integers less than a given prime, is exactly divisible

by that prime. The algebraic formula which expresses the the-

orem, 1-1-1.2.3... (n—1), is divisible by n
,
n being a prime

number. Thus 1 + 1.2.3.4.5. 6=721, is exactly divisible

by 7.

This theorem was first demonstrated by Lagrange ;
his pro

cess of reasoning, as might be expected, was very ingenious.

It was afterward demonstrated by Euler, and finally by Gaust.,

who extended the theorem by proving that "The product of
all those numbers less than, and prime to, a given number,

a±l, is divisible by a;" the ambiguous sign being —,
when a
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is of the form p"", or 2p'", p being any prime number greater

than 2
; and, also, when a=4; but positive in all other cases.

Wilson's Theorem furnishes us with an infallible rule, in

theory, for ascertaining whether a given number be a prime or

not
;
for it evidently belongs exclusively to those numbers, as it

fails in all other cases
;
but it is of no use in a practical point

of view, on account of the great magnitude of the product even

for a few terms.

In the later works on the Theory of Numbers it is demon-

strated that. No algebraical formula can represent prime
numbers only. It is also shown that. The number of prime
numbers is infinite. The latter proposition is evident a

priori; the former was pretty nearly evident from induction

before it received a rigid demonstration.

The distribution of prime numbers does not follow any known

law; but for a given interval it is found that the number of

primes is generally less the higher the beginning of the interval

is taken. The whole number of primes below 10,000 is 1,230;

between 10,000 and 20,000 it is 1,033; between 20,000 and

30,000 it is 983
;
between 90,000 and 100,000 it is 879. The

largest prime which had been verified when Barlow wrote, is

2^' 1=2,147,483,647, which was found by Euler.

The term prime is also applied to a species of numbers called

complex numbers, first suggested by Gauss in 1825. Accord-

ing to this theory, a complex integer is of the form a + bynj^
in which a and b denote ordinary (real) integers. The product

a2-|-62^ of a complex number a-\-bs/^—\', and its conjugate,

a—&\/^ir, is called its norm, and is denoted by the symbols

N(a -\- bs/^^), N'(a
—6^:zi). The four associative numbers,

a -f- by^\, ay/'^i—b, —a—b^/"^, and —a^—i + 6, as well

as their respective conjugates, have all the same norm. A com-

plex number is said to be prime when it admits of no divisor

except itself, its associatives, and the four units, 1,
—

1, v^^,
and —\^'^' Many of the higher theorems, such as that of

Format, may be extended to the system of complex numbers.



CHAPTER lY.

PERFECT, IMPERFECT, ETC., NUMBERS.

HAYING
separated numbers into their factors, the human

mind, ever active in the attempt to discover the new, be-

gan to compare the sum of the factors or divisors of numbers
with the numbers themselves, and thus discovered certain re-

lations which gave rise to three new classes of numbers. In

some cases it was seen that a number was just equal to the

sum of all of its divisors, not including itself, and such num-
bers were called Perfect Numbers. Numbers not possessing
this property were called Imperfect Numbers; and were divided

into two classes, Defective and Abundant, according as they
were greater or less than the sum of their divisors.

Pushing the comparison still further, it was also discovered

that some numbers were reciprocally equal to their divisors;
and this relation was so intimate that such numbers were re-

garded as friendly or Amicable Numbers. These several classes

will be formally deBned in this chapter. Perfect Numbers
were discovered by Michael Steiffel, Professor of Mathematics

in the University of Jena; Amicable Numbers were first in-

vestigated by the Dutch mathematician Yan Schooten, who
lived from 1581 to 1646.

A Perfect Number is one which is equal to the sum of all its

divisors, except itself; thus, 6=1+ 2+3; 28= 1 +2+4+7+ 14

An Imperfect Number is one which is not equal to the sum
of all its divisors. Imperfect Numbers are Abundant or Z>e-

fective. An Abundant Number is one the sum of whose di-

visors exceeds the number itself; as, l+2+3+6+9>18. A

( 383 )
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Defective Number is one the sum of whose divisors is less

than the number itself; as, l+2+4 + 8<lG.
Every number of the form (2""') (2"

—
1), the latter factor

being a prime number, is a perfect number. The only values

of n yet found, which make 2"—1 a prime are 2, 3, 5, 1, 13, 17,

19, and 31
;

there are, therefore, only ten perfect numbers

known. Substituting 2 for n in the formula, we have 2(2'^
—1)

—6, the first perfect number
;

the second is
2'''(2''
—1)=28.

The first eight perfect numbers are, 6, 28, 496, 8128, 3S550336,

8589869056, 137438691328, 2305843008139952128. An author

gives also 2417851639228158837784576, 9903520314282971830-

448816128. Each number, as is seen, ends in 6 or 28.

The difficulty in finding perfect numbers consists in finding

primes of the form of 2"— 1. The greatest prime number, ac-

cording to Barlow, 3"et ascertained, is 2"— 1= 2147483647, dis-

covered by Euler
;
and the last of the above perfect numbers,

which depends upon this, is the greatest perfect number known

at present; and Barlow remarks that it is probably the great-

est that will ever be discovered; for, as they are merely curi-

ous without being useful, it is not likely that any person will

attempt to find one beyond it. An author of an arithmetic

gives two other numbers which are said to be perfect, but I

have not tested them and do not know bis authority.

Two numbers are called Amicable when each is equal to the

sum of the divisors of the other; thus, 284 and 220. The for-

mulas for finding amicable numbers are A='i"-+^d and 5=
2''+'&c, in which n is an integer, and b, c, and d are prime
numbers satisfying the following conditions: 1st, 6=3 x 2"—1

;

2d, 0=6x2"—1; 3d, d=18x2'"— 1. If we make n=l, we
find 6=5, c=ll, and d=71; substituting these in the above

formulas, we have ^=4x71=284, and 5=4x5x11^220, the

first pair of amicable numbers. The next two pairs are

17296, 18416, and 936358, 9437056.

The first pair, 220 and 284, were found by E. Van Schooten,

with whom the name amicable appears to have originated, though
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Rudolpiius and Descartes were previously acquainted with

ihis property of certain numbers. A formula for amicable

numbers was, in fact, given by Descartes, and afterwards gen-

eralized by Euler and others.

Figui-ate Numhera.—Figurate Numbers are numbers formed

from an arithmetical progression whose first term is unity, and

common difference integral, by taking successively the sum of

the first two, the first three, the lirst four, etc., terms of the

series; and then operating on the new series in the same man-

ner as in the original progression in order to obtain a second

series, and so on.

For example, take the series of natural numbers in which

the common difference is 1, as repre-

ented by A in the margin: then the A, 1-2-3-4-5 - G - 7

• -D J 1 . iV -11 B, l-:!-G-10-15-21-28
series B, derived as stated above, will '

.

4 in '^0 'V 5r 84
be figurate numbers; series C, derived

-q 1-5-15-35-70-12G-210

as above from series B and series D,

derived from series C, will be figurate numbers. Other series

could be obtained by beginning with any other arithmetical

series whose first term is 1, and common difference an integer.

Thus, the series derived from the progression 1, 3, 5, 7, 9, etc.,

is 1, 4, 9, Ifi, 25, etc.

A more general method of conceiving figurate numbers is to

regard them as a series of numbers, the general term of each

series being expressed by the formula,

n(ra-|-l)(n+ 2)(n-f3) .... (ra+m)

1.2.3.4 ; ; \ (m+iy
in which m represents the order of the series, and n represents

the place of the required term.

Series of figurate numbers are divided into orders; when m
= 0, the series is of the 1st order; when m = 1, the series is

of the 2d order; when m = 2, it is of the 3d order, etc.

By regarding m equal to in this formula, and substituting

successive numbers 1, 2, 3, etc., for n, it will be seen that the

general term is n, and we find that the figurate series of the

first order is the series of natural numbers, 1, 2, 3, 4, etc., n.
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By regarding m equal to 1, the general term of the series

becomes ———
> and substituting the successive values of n,

1 . ^

1, 2, 3, etc., we find the terms to be 1, 3, 6, 10, 15, 21, 28, etc.,

which :s the series of figurate numbers of the second order.

Ir a similar manner we find the general term of the figurate

series of the 3d and 4th orders to be respectively,

n(n + l)(n + 2) n(n + l)(n + 2) (n + 3)
and1.2.3 1.2.3.4

from which we can readily derive those series. These several

series of figurate numbers are the same as those represented in

the margin above.

One of the most remarkable properties of the series of figu-

rate numbers is that, if the ?ith term of a series of any order be

added to the (n -\- l)th term of the series of the preceding

order, the sum will be equal to the (n-\-l)th term of the series

of the given order. Thus, in the series marked C, if we add

the second term, 4, to the third term, 6, in series B, we shall

have the third term, 10, of series C
;
the third term of series C

plus the fourth term of series B equals the fourth term of series

C, etc.

If we begin with a series of I's, all of the series of figurate

numbers may be deduced in succession by the application of

tb'S principle.

Orders op Figurate Numbers.

Series of 1
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ead diagonally upward are the numerical coefficients of the

terms in the development of (a-\-b) with an exponent corre-

sponding to the order of the series. It is said that it was this

principle which gave rise to a complete investigation of the

subject of tigurate numl)ers.

In speaking of defining figurate numbers by giving the form

of each of the orders, Barlow remarks that it is more simple to

deduce the generation of figurate numbers from their form than

to deduce their form from their generation. The principle

given above, showing the relation of the terms of two succes-

sive orders of figurate numbers, is ascribed to Fermat, and is

considered by him as one of his most interesting propositions.

Poli/gonal Numbers are figurate numbers which represent

the sides of polygons. The second series of figurate numbers,

I, 3, 6, 10, etc., are called triangular .

nuvibers, because the number of units • • •

that they express can be arranged in
* * * . . •

the form of a triangle. If we take

the series 1, 3, 5, 7, 9, etc., in which

the common difference is 2, we obtain ....
the figurate series, 1, 4, 9, 16, 25, etc., which are called square

numbers, because they can be arranged in a square. The

series 1, 4, Y, 10, etc., in which the common diff'erence is 3,

gives the series 1, 5, 12, 22, etc., which ai-e called pentagonal

numbers, because they can be arranged in the form of a penta-

gon. In a similar manner we obtain hexagonal, hepfagonal,

')ctagonal, etc., numbers. It will be noticed that the number

of the sides of the polygon which they represent is always two

greater than the common difiTerence of the series from which

they were derived. Common difference=l

When the common Triangular numbers
j.nc n ,1 Common dlfrerence=2
diff'erence of the

Square numbers
series in arithmeti- Common difference=3

cal progression is Pentagonal numbers

1, the sums of the terms give the triangular numbers; when
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the common difference is 2, the sums of the terms are the square

numbers; when the difference is 3, the sums are the pentagonal

numbers, and so on.

These numbers are called polygonal from possessing the pro-

perty that the same number of points may be arranged in the

form of that polygonal figure to which it belongs. Thus the

pentagonal numbers 5, 12, 22, 35, 51, etc., may be severally

arranged in the form of a pentagon. Thus, 5 points will form

one pentagon ;
12 points will form a second pentagon enclos-

ing the former
; 22, a third pentagon enclosing both of the

former, etc.

The following property of polygonal numbers was discovered

by Fermat: Every number is either a triangular number or

the sum of two or three triangular numbers; every number is

either a square number, or the sum of two, three, or four

aquare numbers ; every number is either a pentagonal number

or the sum of two, three, four, or five pentagonal numbers ;

etc. This property is generally true, although it has been

demonstrated for only triangular and square numbers. All

the other cases still remain without demonstration, notwith-

standing the researches of many of the ablest mathematicians.

Fermat himself, however, as appears from one of his notes on

Diophantus, was in possession of the demonstration, although
it was never published, which circumstance renders the theorem

still more interesting to mathematicians, and the demonstration

of it more desirable..

Pyramidal Numbers are those which represent the number

of bodies that can be arranged in pyramids. They are formed

by the successive sums of polygonal numbers in the same man-

ner as the polygonal numbers are formed from arithmetical

progressions. The Triangular Pyramidal numbers are the

series of figurate numbers derived from the series of triangular

numbers. Thus, from the triangular numbers 1, 3, 6, 10, 15,

etc., we have the triangular pyramidal numbers 1, 4, 10, 20,

etc. The Square Pyramidal numbers are derived from the

square numbers.



CHAPTER V.

DIVISIBILITY OF NUMBERS.

IN
factoring a composite number, we divide successively by

exact divisors of the number till we obtain a quotient which

is a prime number. In order to know by what numbers to

divide, it is convenient to have some tests of divisibility, other-

wise it would be necessary to try several numbers until we hit

upon one which is exactly contained. There are certain laws

which indicate, without the test of actual division, whether a

number is divisible by a given factor, some of which are simple

and may be readily applied. The investigation of these laws

of the relations of the factors of numbers to the numbers them-

selves, gives rise to a subject known as the Divisibility of Num-
bers.

The laws for the divisibility of numbers, as usually presented,

embrace the conditions of divisibility by the numbers 2, 3, 4,

etc., up to 12. These laws may be stated as follows:

1. A Clumber is divisible by 2 when the right-hand term is

zero or an even digit. For, the number is evidently an even

number, and all even numbers are divisible by 2.

2. A number is divisible by 3 when the sum of the numbers

denoted by its digits is divisible by 3. It will be shown here-

after that every number is a multiple of 9, plus the sum of its

digits; hence, since 3 is a factor of 9, the number is divisible

by 3 when the sum of the digits is divisible by 3.

3. A number is divisible by 4, when the two right-hand terms

are ciphers, or when they express a number which is divisible

by 4. If the two right-hand terms are ciphers, the number

( 389 )



390 THE PHILOSOPHY OF ARITHMETIC.

equals a number of hundreds, and since 100 is divisible by 4,

any number of hundreds is divisible by 4. If the number ex-

pressed by the two right-hand digits is divisible by 4, the num-

ber will consist of a number of hundreds, plus the number ex-

pressed by the two right-hand digits ;
and since both of these

are divisible by 4, their sum, which is the number itself, is

divisible by 4.

4. A number is divisible by 5, when its right-hand term is

or 5. If the right-hand term is 0, the number is a number

of times 10
;
and since 10 is divisible by 5, the number itself

is divisible by 5. If the right-hand term is 5, the entire num-

ber will consist of a number of tens, plus 5
;
and since both

of these are divisible by 5, their sum, which is the number

itself, is divisible by 5.

5. A number is divisible by 6, when it is even and the sum

of the digits is divisible by 3. Since the number is even, it is

divisible by 2, and since the sum of the digits is divisible by 3,

the number is divisible by 3, and since it contains both 2 and 3

it will contain their product, 3x2, or 6,

6. A number is divisible by 7, ivhen the sum of the odd nu-

merical periods, minus the sum of the even numerical periods,

is divisible by 7. The law for the divisibility by 7 is perhaps

of not so much practical importance as the others, being not

quite so readily applied, but it is of too much scientific interest

to be omitted from the series. Its demonstration will be given

in the following chapter.

7. A number is divisible by 8, when the three right-hand terms

are ciphers, or when the number expressed by them is divisible

by 8. If the three right-hand terms are ciphers, the number

equals a number of thousands; and since 1000 is divisible by 8,

any number of thousands is divisible by 8. If the number ex-

pressed by the three right-hand digits is divisible by 8, the

entire number will consist of a number of thousands, plus the

number expressed by the three right-hand digits (thus 17368

= 17,000+ 368) ;
and since both of these parts are divisible I7

8, their sum, which is the number itself, is divisible by 8.
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8. A )i inn her is divisible by 9, when the sum of tlie diyiis is

divisible by 9. This law is derived from showiug that a num-
ber may be resolved into two parts, one part being- a multiple
of 9 and the other the sum of the digits. A complete demon-
stration is presented on a subsequ<3nt page^ to which the reader

is referred.

9. A number is divisible by 10, when the unit term is 0. For,
such a number equals a number of tens, and any number of tens

is divisible by 10; hence the number is divisible by 10.

10. A number is divisible by 11, when the difference between

the sums of the digits in the odd jjlaces and in the even places
is divisible by 11, or when the difference is 0. This law

is derived by showing that a number may be resolved into two

parts, one part being a multiple of 11, and the other part con-

sisting of the sum of the digits in the odd places, minus the

sum of the digits in the even places. A complete demonstra-

tion will be presented on a subsequent page.

11. A number is divisible by 12, when the sum of the digits

is divisible by 3 and the number expressed by tJie two right-

hand digits is divisible by i. For, since the sum of the digits

is divisible by 3, the number is divisible by 3, and since the

number expressed by the two right-hand digits is divisible by
4, the number is divisible by 4

; hence, since the number is

divisible by both 3 and 4, it is divisible by their product, or 12.

These laws are simple, and, with the exception of those re-

lating to the numbers 7, 9, and II, readily applied. The laws of

dividing by 9 and 11 present some interesting points, which will

be formally discussed. It will be noticed, upon examining text-

books on arithmetic, and also works on the theory of numbers,

that the law of divisibility by t is omitted. Apparently efforts

vi ere made to discover such a law, for several writers give

some special rules for dividing by 7
;
but it would seem that

nc general law was known to them. In the principle as above

presented, this hiatus is filled up by a law not quite so simple
as that for the other numbers, but still of scientific interest, if
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not of much practical value. Besides the law given, there are

several other laws, interesting as showing the development of

the subject, and which we therefore present. The methods of

demonstration are similar to those used in proving the divisi-

bility of numbers by 9 and 11; indeed, one of the laws from

which the others were derived was discovered by the applica-

tion of that method to the number 7. I shall therefore first

present the demonstration of divisibility by 9 and 11, and then

state and demonstrate the laws relating to the number 7.

Divisibility by Nine.—The law of divisibility by nine has

been known for a long time. By whom it was discovered has

not been ascertained. Its application to testing the correctness

of the work in the fundamental rules, called proof by
"
casting

out nines," has been attributed to the Arabs. The law, as pre-

viously stated, is that a number is divisible by nine when the

sum of the digits is divisible by nine. This principle depends
on a more general law which will be first stated, and then the

law of exact division, as well as some other interesting princi-

ples, will be drawn from it.

1. A number divided by 9 leaves the same remainder as the

sum of the digits divided by 9.

This theorem can be demonstrated both arithmetically and

algebraically. We will first present the arithmetical demonstra-

tion. If we take any number, as 6854, and analyze it, as in

the margin, r 4__ 4

we will see
^or ,_ J 50^5x10 =5x (9+l)=5x9 +5

thatitcon- ^^^"'-l 800=8X100 =:.8X (99+l).--8x99 +8
sists of two 1^

6000=6 X 1000=6 x (999+l)=6 X 999+6

parts: the ^1S^«"/J Sumoffiigits

first part a
•*• 6854 = 5x9+8x99+6x999 + 4+5+8-1-6

multiple of 9, and the second part the sum of the digits.

The first part is evidently divisible by 9, hence the only re-

mainder that can arise from dividing a number by 9 will be

equal to the remainder arising from dividing the sum of the

digits by 9. When the sum of the digits is exactly divisible
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by 9, it is evident that the number itself is exactly divisible

by 9, which proves the theorem. From this theorem the fol-

lowing principles may be readily inferred:

2. A number is. exactly divisible by 9 when the sum of its

digits is divisible by 9.

3. The difference between any number and the sum of its

digits is divisible by 9.

4. A number divided by 9 gives the same remainder as any
one formed by changing the order of the figures.

5. The difference between two numbers, the sums of whose

digits are equal, is exactly divisible by 9.

The fundamental theorem may also be demonstrated algebra-

ically as follows: Let a, b, c, d, etc., represent the digits of

any number, aud r the radix of the scale, that is, the number

of units in a group ;
then every number may be represented

by formula (1) below. If we now subtract b, c, d, etc., from

one part of this expression, and add them to another part, it

will not change the value, and we shall have formula (2) ;
and

factoring, we obtain formula (3).

(1). N=^a+br+cr'+dr'+er'+etc.

(2). N'=br— b tcr^—c+dr^—d-\-er*—e, etc.-i-a + b + c+d+e
+etc.

(3). N=b (r— 1) + c (r'—l) + d (r^— 1) + e (r'—l) +etc. +a
^hi-c+d+e+ etc.

Now, r— 1, r^— 1, r'— 1, etc., etc., are all divisible by r—I;

hence the only remainder which can arise from dividing the

number by r— 1, will occur from dividing a+b-'rc+d+etc, by
r— 1

;
that is, any number divided by r— 1 leaves the same

remainder as the sum of the digits divided by r— 1. In our

decimal scale r=10, hence r— 1= 9; and hence any number

divided by 9 leaves the same remainder as the sum of the digits

divided by 9. This law is the basis of some very interesting

properties, and also of the proof of the fundamental rules called

"casting out nines."

Divisibility by Eleven.—The law of the divisibility of num-
17*
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bors by 11 is quite similar to that of 9. This might have been

anticipated, as they each differ from the basis of the scale by

uuiiy, the former being a unit below and the latter a unit above

the base. The law, as previously stated, is that a number i&

divisible by 11 when the difference between the sum of the

digits in tlie odd places and the even places is divisible by 11.

This principle depends upon a more general one, which will first

be staled, and then this, as well as some other interesting prin-

ciples, will be derived from it.

1. Every number is a multiple of 11, plus the sum of the

digits in the odd places, minus the sum of the digits in the

even places. This principle may be demonstrated both arith-

metically and algebraically. We will first give the arithmetical

proof. If we take any number, as 65478, and analyze it as in-
*

ft
I

Q

70= 7x10= 7x(ll—1)= 7x11—7
65478=- 400= 4x100= 4x(99-|-l)= 4x99+4

5000= 5xl000=5x(1001—I)=5xl001—5

.
60000=6X 10000=6X (9999+ 1)=6x 9999+ 6

Sum of Sum of
Multiples of 11. odd digits. even digits.

.'. 65478=7x11+4x99+5x1001+6x9999 + 8+4+6"— 5+7

dicated, we shall see that it consists of two parts; the first

being a multiple of 11, and the second consisting of the sum
of the digits in the odd places, minus the sum of the digits in

the even places. The first part is evidently divisible by 11
;

hence the only remainder that can arise from dividing a

number by 11 will be equal to the remainder arising from

dividing the difference between the sums of the digits in the

odd places and the even places by 11. When this difference is

exactly divisible by 11, it follows that the number itself is

divisible by 11. When the sum of the digits in the even places

is greater than the sum in the odd places, we take the difference,

divide by 11, and subtract the remainder from 11 to find the

true remainder. The reason for this will appear from the

above demonstration. From this theorem the following prin-

ciples can be readily inferred :

2. A number is exactly divisible by 11, when the sum of the
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digits in the odd places is equal to the sum of the digits in the

even places.

3 A number is exactly divisible by W, when the difference
between the sums of the digits in the odd places and the ev^n

places is a multiple of 1 1.

4. A number increased by the sum of the digits in the even

places and diminished by the sum of the digits in the odd

places, is exactly divisible by 11.

5. The excess of II 's in any number is not changed by add-

ing any multiple of II to the sum of the digits of either order.

The algebraic demonstration of this property is as follows:

Taking the same formula as for the number 9, we add b and

then subtract b, we subtract c and t^hen add c, etc., the formula

becoming (2) below, being the same in value as the first,

but changed in foi'm. Then, factoring, we have (3).

(1). iV (i + l))-{- -r^ dr +er*-\-etc.

(2).N=br+b+cr'—c-hdr^-{-d-{-er'—e-{-eic.^a-b+c—di-e,
etc.

(3).^=6(r+l)+c(r^-l) + c^(r^+l)+e(r*-l)+etc.+(a+
c fe-|-etc.)

—
(6-|-<i+etc.)

Now r+l, r^— 1, r^+1, etc., are each divisible by r+1;
hence the only remainder that can arise from dividing this

number by r+1 must arise from dividing (a+c+e+etc.)—
(b+d+etc.) by r+1

;
that is, by dividing the diff'erence of the

sum of the digits in the even places subtracted from the sum

of the digits in the odd places by r+1. In the decimal scale,

r=10, and r+l=ll
;
hence we see that any number divided

by II leaves the same remainder as the difference of the sum
of the digits in the even places, subtracted from the sum of the

digits in the odd places does when divided by 11. When this

difference is exactly divisible by 11, the number itself is divisi-

ble, wliich proves the principle of the divisibility by 11. This

principle may also be used for the proof of the fundamental

rules, but not quite so conveniently as that of the number 9.



CHAPTER YI.

THE DIVISIBILITY BY SEVEN.

THE
Divisibility of Numbers, as presented by diflferent

authors, embraces the conditions of divisibility by the

numbers 2, 3, etc., up to 12, with the omission of tlie num-

ber 1. This omission leads us to inquire whether there is

any general law for the divisibility of numbers by 7. A few

of our text-books present some special truths in regard to this

subject, among which arp the following:

1. A number is divisible by 1 when the unit term is one-half

or one-ninth of the part on the left. Thus 21, 42, 63, 126, and

91, 182, 273, etc.

2. A number is divisible by 7 when the number expressed

by the two right-hand terms is five times the part on the left,

or one-third of it. Thus 525, 840, 1995, and 602, 903, 3612,

etc.

3. A number consisting of not more than two numerical

periods is divisible by 7 when these periods are alike. Thus

45045, 235235, 506506, etc., are divisible by 7.

There are, however, some general laws for the divisibility

by 7, which seem to have been overlooked by most writers on

the theory of numbers, and which, though of not much practical

importance, are interesting in a scientific point of view. The

first and least simple of these laws is as follows:

1. A number is divisible by 7, wlien the sum of once the

first, or units digii, 3 times the second, 2 times the third, 6

times the fourth, 4 times the fifth, 5 times the sixth, once the

seventh, 3 times the eighth, etc., is divisible by 7. It will be

( 396)
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seen that the series of multipliers is 1, 3, 2, 6, 4, 5. To illus-

trate the law, take the number 7935942, and we have for the

sum of the multiples of the digits, Ix 2+3 x 4+2 x 9+6 x 5+ 4 x
3+5x9+1x7=126, which is exactly divisible by 7; and if wo
divide the number itself by 7, we find there is no remainder.

Assuming this principle
—it will be demonstrated on page

398—we can derive several other principles of divisibility

from it.

In this law we see that the second half of the series of mul-

tipliers, 6, 4, 5, equals respectively 7 minus the first half, 1, 3, 2
;

hence, instead of adding the multiples of the second series, G, 4,

5, we may subtract the respective multiples of the terms of the

second period by the first series of multipliers, 1, 3, 2, which

will give rise to the following principle :

2. A number is divisible by 7, when the number arising

from the sum of once the first digit, 3 times the second,

2 times the third, minus the sum of the same multiples of the

next three digits, plus the sum of the same multiples of the

next three digits,, etc., is divisible by 7.

It will be seen that the series of multipliers is 1, 3, 2, the

first products additive, the second products subtractive, etc.
;

the odd numerical periods being additive and the even periods

subtractive. If we take the number 5439728, we have 1x8+
3 X 2+2 X 7—1 X 9—3 X 3—2 x 4+1 x 5=7, which is divisible by
7. Upon trial we find the original number is also exactly di-

visible by 7.

This second principle may also be stated thus : A number is

divisible by 7 when the sum of the multiples expressed by the

numbers, I, 3, 2, of the terms of the odd numerical periods,

minus the sum of the same multiples of the terms of the even

numerical periods, is divisible by 7.

Now, if we add exact multiples of 7 to the multiples of the

terms which are united in the test of divisibility, it will not

change the remainder. Thus, taking the number 5439728, if

we add 7 X 2 to 3 x 2, we have 10 X 2, or 20
;
and adding 98 x 7
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to 2x7 wc have 100 xY, or 100; hence we may use in place
of 1x8+3x2+2x7, 8+20+ 700, or 728, the first numerical

period ;
and in the same way it may be shown that we may

use the second period subtractively in the test, etc. Hence
f'-om Principle 2 we may derive the following principle:

3. A number is divisible by 7, ivhen the sum of the odd nu-

w.erical periods, minus the sum of the even numerical periods,
is divisible by 7.

To illustrate, take the number 5,643,378,762; we have for

the sum of the odd numerical periods 762+643=1405
;

for the

sum of the even periods, 378+5=383; the difference is 1022,
which is exactly divisible by 7 ; and if we divide the number
itself by 7, we find that there is also no remainder.

If we apply the same reasoning to Principle 1, by which we
derived Principle 3 from Principle 2, we shall derive from it the

following principle:

4. A number is divisible by 7, when the sum of the numbers
denot^d by the double numerical periods is divisible by 7.

Thus, in the number 5,643,378,762, we have 5,643+378,762=
384,405, which is divisible by 7, and the number is also divisi-

ble by 7.

The first principle, from which I have derived the other

three, may be demonstrated arithmeticallv and al^-ebraicallv

Let us take any number as 98765432 and analyze it thus:

2= 1x2
30= 3X10= 3x(7+3)= 3x7+3x3
400= 4x100= 4x(98+2)= 4x98+2x4
5000= 5X1000= ,5x (994+0= 5x994+6x5
60000= 6x10000= 6x (9996+4)= 6x9996+4x6
700000= 7x100000= 7x (99995+5)= 7x99995+5x7
8000000= 8X1000000= 8x (999999+1)= 8x999999+1x8
90000000=9X 10000000=9X (9999997+ 3)=9X 9999997+3X 9

Here 98765432=a multiple of 7 plus once the 1st term, plus
three times the second term, plus two times the third term, plus
six times the fourth term, plus /our times the fifth term, plus
Jive times the sixth term, plus once the seventh term, plus three
times the eighth term. Hence the only remainder that can occur
must arise from dividing the sum of the multiples of the terms
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by 7
;
hence when the sum of these multiples is divisible by 7,

the number is divisible by 7, which proves the principle.

The second principle, which is readily derived from the first.

may be demonstrated independently, as follows:

2= 1x2
30= 3x10= 3x(7+3)= 3x7+3x3
400= 4x100= 4x(984-2)= 4x98+2x4
5000= 5X1000= 5x(1001—1)= 5x1001—1x5
60000= 6X10000= 6x(10003—3)= 6x10003—3x6
700000= 7x100000= 7 X (100002—2)= 7x100002—2x7
8000000= 8x1000000= 8x (999999+1)= 8x999999+1x8
90000000=9xl0000000=9x(9999997+3)=9x 9999997+3x0

Here 98765432=a multiple of 7, plus once the first digit,

plus three times the second, plus twice the third, minus once the

fourth, minus three times the fifth, minus tioice the sixth, plus

once the seventh, plus three times the eighth. Hence the only

remainder that can occur must arise from.dividing the difference

between the additive and subtract! ve multiples of the digits by
7

; therefore, when this ditference is divisible by 7, the number

is divisible by 7, which proves the principle. When the sum

of the subtractive multiples of the digits is greater than the

sum of the additive, we take the difference, divide by 7, and

subtract the remainder from 7 to find the true remainder.

To demonstrate the third principle, take any number, as 7,946,-

321,675 and analyze it, and it will be seen to consist of parts

which are multiples of 7, plus the periods in the odd places,

minus the periods in the even places.

675= 675
321000= 321 X (1001—1)= 321x1001—321

946000000= 946x (999999+l)=946x999x 1001+ 916

1.7000000000=7X11000000001—l)=7x999001x 1001- 7

Multiples of 7. Odd periods. Even ptT'.ods.

321X 1001+946 X 999999+ 7 X 1000000001 + 675+946 — 321+7

Now 1001 is a multiple of 7, 999999 is 999 times 1001, and

1000000001 is also a multiple of 1001, and if we continue the

number to still higher periods, we shall find a constant series

of multiples of 1001, alternately 1 more and 1 less than the

number represented by one unit of the period. Hence

7,946,321,675 is composed of the sum of three multiples of 7,

plus (675+946)— (321 + 7), or the diiferencc between the eums

7946321675:



400 THE PHILOSOPHY OF ARITHMETIC.

of the even and odd periods. The first part is evidently divisi-

ble by 7, therefore the divisibility of the number depends on

the divisibility of the difference of the sums of the odd and

even periods ;
and when this difference is divisible by 7, the

number itself must be divisible by 7, which proves the prin-

ciple.

From this demonstration, we can immediately derive the fol-

lowing principle, more general than the one stated and from

which that may be derived:

5. Any number divided by 7 giof's the same remainder as is

obtained when the aum of the odd numerical periods, minus the

sum of the even numerical periods, is divided by 7. If the sum
of the even periods is the greater, we find the difference, divide

by 7, and subtract the remainder from 7 for the true remainder.

This investigation leads to a still more general principle of

divisibility, derived from the fact that 1001, which maybe con-

sidered as the basis of the above demonstration, is the product
of 7, 11, and 13; hence what we have just proved for 7, is also

true of 1 1 and 1.3. The most general form of the principle then

is as follows :

6. Any number divided by 7, 11, or 13 gives the same re-

mainder as is obtained when the sum of the odd numerical

periods, minus the sum ofthe even numerical periods, is divided

by 7, 11, or 13 respectively.

A special truth growing out of this general principle, had

been previously given in the rule that any number of not more

than two periods, when those two periods are alike, is divisible

by 7, 11, or 13. All such numbers, on examination, will be found

to be multiples of 1001, and, of course, divisible by its factors.

It may seem surprising that those who were familiar with

this special truth, and were thus on the very brink of a dis-

covery, did not extend it and reach the general law above pre-

sented.

The fourth Principle, which was derived from the first, may
also be demonstrated independently by a method similar to

that used in proving the third Principle. The algebraic demon-
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stration of Principle 1, which is the foundation of the other

principles, is as follows: Take the same general formula as used

in demonstrating the divisibility by 9 and 11, add and subtract

36, 3V, 3X etc., and the formula is readily reduced to the form

of (5).

(1). N=a-\-hr+cr''+dr^+er*-\-fr^+gr'^-\-hr'-{-Qi(i.

(2). iV^--6r-36+cr*—3V+(Zr'—3'(Z+er*—3^e+/r5— 3y, etc

+a+36+9c+27(i+81e+243/+ete.

(3). i\r=&(r-3)+c(r^-3^)+^(r^-30+e(r*-3*)+/(r*—3*)

+g{r^—Z') etc.+a+36+9c+2Tci+81e+243/+729g, etc.

(4). N=h(r—^)+c(r'—^')^d(r^—y)+e (r*—3*) +/(r*—3^)

+,(r«_3«)+etc.+ a+36+
{ \l+ { ^1^+ j

^^.^
|
238/^

j^28^+etc.

(5). N=
\
b (r—3) + c (r^—30 + d (r'— 3^ + e (r'— 3*) +/

(r5_30+fir(r«—3'')+etc. +7c+2M+ne+238/+ 728y+etc. \
+a

+36+2c+6d+4e+5/+lgf+etc.

Now the first part of this expression is exactly divisible by
r—3, or 7

;
hence the only remainder that can arise must occur

from dividing a4-3&+2c+6tZ, etc., by r—3, or 7
;
that is, by

dividing by 7 the sum of once the first digit, three times the

second, two times the third, six times the fourth, four times

the fifth, five times the sixth, and so on in the same order; and

when this sum is exactly divisible by 7, the number is divisi-

ble by 7. By a slight change in the terms of the formula, the

theorem as stated in the second form may also be derived.

Several years after the discovery of the law expressed in

Principle 2, I learned that Prof. Elliott had employed the same

property as early as 1846. Whether it was known to any
mathematicians previous to this date, I am not able to ascertain.

Laws for Other Numbers.—In a similar manner we may find

a law for the divisibility of numbers by 13, 17, etc. The law
26
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for 13 may be stated as follows: A number is divisible by \Z

when ONCE the first term, minus the sum of 3 times the second

4 tim^s the third and 1 tim.e the fourth, plus the sum of the

same multiples of the next three terms, minus the sum of the

same multiples of the next three terms, etc., is divisible by 13.

It will be noticed that after the first term, the series of num-

bers by which wo multiply is 3, 4, 1, which is easily remem-

bered and readily applied. To illustrate, take the number

8765432
;
we have 2—(3 x 3+4 X 4+1 x 5)+(3 X 6+4 X T +1 X 8)

=26, which is divisible by 13; and on trial we find the num-

ber itself is also divisible.

This law is derived from the more general principle that any
number divided by 13 will give the same remainder as that ob-

tained by dividing the result arising from the above multiples

by 13. This principle may be demonstrated by taking any
number, as 4987654, and analyzing it as in the previous case.

4- +1X4
50= 5x10= 5x(13-3)= 5x13-3x5
600= 0x100= 6x(104-4)= 6x104-4x6

4987654="! 7000= 7x1000= 7x(1001—1)= 7x1001—1x7
80000= 8x10000= 8x(99i)7+3)= 8x9997+3x8
900000= 9x100000= 9x (99996+4)= 9x99996+4x9

.4000000 =4x 1000000 =4x(999999+l)=4x999999+lx4
Laws for the divisibility of numbers by 17, 19, 23, etc., may

be obtained in a similar manner. We present a few of them

below, including 7, 11, and 13, already given.

7.

11.

13.

17.

41.

( 1,

(or 1,
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^o ( 1, 10, 27, -22, -1, -10, -2Y, 22, 1, 10, 21, etc.
'"*• • •

jorl, 10, 21, 51, 12, 63, 46, 22, 1, 10, 21, etc. .

99. . . 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, etc.

w,, j 1,10, -1,-10,1,10, -1,-10,1,10, -1,-10, etc.
^"^- •

"(or 1, 10, 100, 91, 1, 10, 100, 91, 1, 10, 100, 91, etc.

The laws for 99 and 101, it is seen, are very simple and

readily applied.



CHAPTER VII.

PROPERTIES OF THE NUMBER NINE.

TTIHE number Nine possesses the most remarkable pro-

-L parties of any of the natural numbers. Many of these

properties have been known for ceuturies and have excited much
interest among both mathematicians and ordinary scholars.

So striking and peculiar are some of these properties that the

number nine has been called "the most romantic " of all the

numbers. On account of its relation to the numerical scale, if

we get the factor 9 into a number it will cling to the expression

and turn up in a variety of ways, now in one place and now
in another, in a manner truly surprising. It reminds one of a

mountain streamlet which ripples along its pathway, now buried

beneath the ground and for awhile hidden from our sight, but

presently gurgling to the surface at the most unexpected
moment. It is no wonder that the property has been regarded
as magical, and the number been called the "magical number."

X few of these interesting properties will be here presented.

1. The first property of this number which attracts our at-

tention is, that all through the column of "nine times" in the

multiplication table, the sum of the terms is nine or a multiple

of nine. Begin with twice nine, 18; add the digits together,

and 1 and 8 are 9. Three times 9 are 27
;
2 and 7 are 9. So

it goes on up to eleven times nine, which gives 99. Add the

digits; 9 and 9 are 18; 8 and 1 are nine. Go on in the

same manner to any extent, and it is impossible to get rid of

the figure 9. Multiply 326 by 9, and we have 2934, the sum
of whose digits is 18, the sum of whose digits is 9. Let the

( 404 )
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number nine once enter any calculation involving multiplica-

tion, and whatever you do, "like the body of Eugene Aram's

victim," it is sure to turn up again. This curious property is

explained by the principle of divisibility of numbers presented

in the previous chapter. All these numbers being divisible by

9, the sums of their digits must be 9, or a multiple of 9.

2. Another curious property of the number nine is that if

you take any row of figures and change their order as you

please, the numbers thus obtained, when divided by 9, leave

the same remainder. Thus, 42378, 24783, 82734, etc., when

divided by 9 all give the same remainder, 6. The reason of

this is, that the sum of the digits is the same, in whatever order

they stand
; and, as previously shown, the remainder from

dividing a number by 9, is the same as the remainder from

dividing the sum of its digits by 9.

3. An interesting principle is presented in the following

puzzle, which, to the uninitiated, seems very singular. Take

a number consisting of two places, invert the figures, and take

the difference between the resulting number and the first

number, and tell me one figure of the remainder and I will

name the other. The secret is that the sum of the two digits

of the remainder will always equal 9. Thus take 74, invert

the terms, and we have 47
;
take the difference of the two num-

bers and we have 27, in which we see that the sum of 7 and 2

equals 9. In this case, suppose I had not known what number

was taken
;

if the person had named one digit, say 2, I could

have immediately named the other digit 7, since I know that

the sum of the two digits is always 9.

The reason for this is that both numbers, having the same

digits, are multiples of 9 with the same remainder; hence

their difference is an exact multiple of 9, and consequently the

sum of the two digits will equal 9. When the digits of the

number are equal, the difference will be 0; and when they

differ by unity, the difference will be 9.

4. There is another interesting puzzle, based upon these
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principles, which is very curious to one who does not see the

philosophy of it, and interesting to one who does. You tell a

person to write a number of three or more figures ;
divide by

9, and name the remainder
;
erase one figure of the number

;

divide by 9, and tell you the remainder; and you will tell what

figure was erased.

This is readily done when the principle is understood. If

the second remainder is less than the first, the figure erased is

the difference between the remainders; but if the second

remainder is greater than the first, the figure erased equals

the difference of the remainders subtracted from 9. The

reason for this is that the remainder, after dividing a number

by 9, is the same as the remainder after dividing the sum of

the digits by 9, and hence the sum of the digits being diminished

by the number erased, the remainder will also be diminished

by it. If there is no remainder either time, then the term

erased must be either or 9.

To illustrate, suppose the number selected were 457; divid-

ing by 9 the remainder is 7; erasing the second term and

dividing, the remainderis 2; hence the term erased is 7 less 2

or 5. If the number were 461, dividing by 9, the remainder

is 2
; erasing the second term and dividing, the remainder is

5; hence the term erased must be the difference between 5

and 2, or 3, subtracted from 9, which is 6.

5. The following puzzle also arises from the principle of the

divisibility by 9. Take any number, divide it by 9, and name

the remainder; multiply the number taken by some number

which I name, and divide the product by 9, and I will name

the remainder. To tell the remainder, I multiply the first

remainder by the number which I named as a multiplier, and

divide this product by 9. The remainder thus arising will

evidently be the same as the remainder which the person

obtained.

6. If we take any number consisting of three consecutive

digits and, by changing the place of the digits, make two other
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numbers, the sum of these three numbers will be divisible by
9. This depends on the principle that the sum of any three

consecutive digits is divisible by 3; and consequently each

number, if not an exact multiple of 9, is a multiple of 9 plus 3, or

of 9 plus a multiple of 3; and therefore the sum of three numbers

is a multiple of 9 plus three 3's, and thus an exact multiple of

9. If we permutate the digits, making five other numbers, the

sum of the six numbers will be divisible by twice 9
;
which

may also be readily explained.

1. From the law of the divisibility by nine, several other

properties, especially interesting to the young arithmetician,

may be derived. Among these may be mentioned the follow-

ing: 1. If we subtract the sum of the digits from any number

the difference will be exactly divisible by 9. 2. If we take

two numbers in which the sums of the digits are the same, the

difi"erence of the two numbers will be divisible by 9. 3. Ar-

range the terms of any number in whatever order we choose,

and divide by 9, and the remainder in each case is the same.

Such properties as these must have seemed exceedingly curious

to the early arithmeticians, and fully entitle the number nine

to be regarded as a magical number. All of these properties,

it is proper to remark, would have belonged to the number

eleven, if our scale had been duodecimal instead of decimal.
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CHAPTER I.

NATURE OF FRACTIONS.

THE
Unit is the fundamental idea of arithmetic. From it

arise two great classes of numbers—Integers and Frac-

tions. Integers have their origin in the multiplication of the

Unit; Fractions arise from the division of the Unit. One is

the result of an immediate synthesis; the other, of a primary

analysis. Fractions have their origin in the analysis of the

Unit, as integers arise from the synthesis of units.

When the Unit is divided into equal parts, each part is«seen

to bear a certain relation to the Unit, and these parts may be

collected together and numbered. This complex process of di-

vision, relation, and collection, gives us a fraction. The con-

ception of a fraction, therefore, involves three things:—1st, a

division of the unit
; 2d, a comparison of the part with the

unit; 3d, a collection of the equal parts considered. When a

unit is divided into a number of equal parts, the comparison
of the part with the unit gives the fractional idea, and the col-

lection of the parts gives the fraction itself. Herein is clearly

seen the distinction between an integer and a fraction. The
former is an immediate synthesis; the latter involves a process

of division, an idea of relation, and a synthesis of the parts.

A fraction is, therefore, a triune product—a result of analysis,

comparison, and synthesis.

Fractions, as has been stated, have their origin in a division

of the Unit; they may also be derived from the comparison of

numbers. Thus the comparison of one with two, or of two with

four, may give the idea of one-half ; and in a similar manner

(413)

'
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Other fractions may be obtained. This, however, is a possible
rather than the actual origin ;

fractions really originated in the
division of the Unit.

When the Unit is divided into equal parts, these parts are

collected and numbered as individual things ; they may, there-

fore, be regarded as a special kind of units. To distinguish
them from the Unit already considered, we call them fractional
units. This gives us two classes of units, integral units and

fractional units. The integral unit is known as the Unit;
when fractional units are meant we use the distinguishing
term fractional. The definite conception of an integer requires
a clear idea of the Unit

;
the definite conception of a fraction

requires a clear idea both of the integral and the fractional unit.

The character of the thing divided, and the nature of the divis-

ion, must be kept clearly before the mind, in order to obtain a

distinct conception of the fraction. From this brief statement
of the nature of the fraction we are prepared to define it.

Definition.—A fraction is a number of the equal parts of a
Unit. This definition is an immediate inference from the con-

ception of a fraction above presented. We divide the Unit
into equal parts, and then take a number of these equal parts,
and this is the fraction. A definition quite similar to this is,

a fraction is one or more of the equal parts of a unit. This
is not incorrect, though it is preferred to use the word "num-
ber " for "one or more." It is believed that the idea is thus

expressed in the most concise and elegant form, and that it will

meet the approval of mathematicians.

Several other definitions of a fraction have been presented

by different authors, some of which are correct, while others are

liable to serious objections. One writer says, "A fraction is a

part of a unit." This is only part of the truth, for a fraction

may be not only one part but several parts of a unit. Another
writer says, "A fraction is an expression for one or more of

the equal parts of a unit." In this definition the expression,
the written or printed symbols, is made the fraction, which is
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evidently iucorrect, as we have fractions previous to and inde-

pendent of the expression of them. The expressions are not

subjects o'f mathematical calculation, and hence they cannot be

fractions. The same distinction holds between a fraction and

its expression, as between a number and its expression. Thus

we have the number four and the figure 4
;
so we have the

fraction three-fourths, and the expression |, as two distinct

things.

Another definition of a fraction is that it is an "unexecuted

division." Says one writer, "A fraction is nothing more nor

less than an unexecuted division." Says another,
" A fraction

may be regarded as an expression of an unexecuted division."

This conception of a fraction is incorrect, as the idea of a frac-

tion, and the idea of the division of one number by another,

are entirely distinct. The fraction f (4 fifths), means four of

the equal parts which are obtained by dividing a unit into five

equal parts. The division of 4 by 5 will give the expression

|-,
but the idea of 4 divided by 5 is entirely distinct from the

fractional idea; and hence the assertion, that a fraction is nothing

more nor less than an unexecuted division, is absurd.

A fraction has also been defined to be the relation of a part

of anything to the whole. This was the idea of Sir Isaac

Newton, and is correct, though it is rather too abstract for a

popular definition. Another form of stating the same idea is

that
" a fraction is that definite part which a portion is of the

whole." Thus, if we divide an apple into two equal por-

tions, one of these is one-half of the whole, and this definite

part, one-half, is the fraction.
,
This form of statement is not

incorrect, though, like Newton's, it is too abstract for a popular

definition.

Notation.—A fraction being a number of equal parts of a

unit, it is natural that, in the notation of a fraction, we should

indicate the number of parts used, by a figure. It would also,

at first thought, seem natural to represent the name of the frac-

tional unit by the words, half, third, etc., as 2 thirds, 3 fourths,
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etc.; or by their abbreviations, as 2-3ds, 3-4ths, etc. The let-

ters would be finally omitted altogether, and the expressions

become 2-3, 3-4, etc. This probably was the primary form, as

is indicated by the expressions, 2-3 for 2 thirds, 3-4 for 3

fourths, which we meet in some of the. older books.

It has been found more convenient, however, not to express

directly the name of the part, but rather to represent the num-

ber of parts into which the unit is divided, from which the

name of the part is inferred. This might have been done by

writing one figure after another, 2-3, the 3 denoting the number

of equal parts of the unit, and the 2 the number of parts con-

sidered. In practice it has been agreed, however, to write the

figure denoting the number of parts into which the unit is

divided, under the other, separating them by a line, as in divi-

sion. The number expressed by the figure below the line is

called the denominator of the fraction, the number expressed

bv the figure above the line is called the numerator of the

fraction. The primary object of the figure below the line is not

to name the fractional unit, but to denote the number of equal

parts of a unit
;
from this the name of the fractional unit is in-

ferred. Primarily, then, in our present notation, the denomi-

nator of the fraction is not the denomination of the fraction,

though from the denominator the denomination is inferred.

The denominator thus serves the double object of showing

directly the number of equal parts into which the unit is divided,

and, indirectly, the name or denomination of the fraction. This

distinction should be carefully noted.

In integers we have one word to indicate the thing itself,

and another to indicate the expression of it. Thus, number

means the how many, or thing itself; and figure, the expres-

sion of it
;
the thing and its symbol being distinguished by in-

dependent names. In fractions there are no such terras to distin-

guish the expression of a fraction from the fraction itself. We
are therefore obliged to use the same word fraction to designate

both. This we are authorized to do by a figure of rhetoric
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called Metonymy, in which the name of an object is sometimes

given to the symbol, or expression of the object. It is conse-

quently allowable to use the word fraction when we mean the

expression of a fraction, though this frequently occasions con-

fusion and calls for particular care on the part of the teacher

to prevent it. We are sometimes obliged to make the

same dual use of the terms numerator and denominator, but

should always do so with extreme caution to avoid confusion.

The expression of a fraction in its relation to the fraction

itself, is seen, when analyzed, to be a more complicated thing

than at first appears. To illustrate; first, we have the fraction

itself, as so many jmrts of a unit
;
then we have the tioo figm-ea

to repre>fent the fraction; and then we have the numbers, which

these two figures denote
;

all of which should be carefully dis-

tinguished, if we would have a clear idea of the relation of a

fraction to its notation. If we begin with the unit and com-

pare it with the fraction as expressed, the matter becomes still

more complicated. Thus, first we have the Unit; the-a the

equal pa)-ts into which the Unit is divided; then the relation

of these parts to the Unit; then the expression for a number

of these parts, consisting of two figures ; and then the numbers

which these figures denote. It is therefore not entirely sur-

prising that writers should have been careless and confused in

their use of the terlns relating to fractions.

History.—Before proceeding to the classification and treat-

ment of Fractions, attention is called to what is known con-

cerning their origin and history. The earliest work treat-

ing of the subject of Fractions is the Lilawati of the Hin-

doos. Fractions in the Lilawati are denoted by writing the

numerator above the denominator, without any line between

them. The introduction of the line of separation is due to the

Arabs
;
and it is found in the earliest manuscripts on arith-

metic. To denote a fraction of a fraction, as f of |, the two

fractions are written consecutively, without any symbol between

them. To represent a number increased by a fraction, the

27
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fraction is written beneath the number
;
and when the fraction

is to be subtracted from the number a dot is prefixed to it; thus,

2^ is denoted by ]"
and 3—I by.^

4 4

In other cases, their notation is not intelligible without ver-

bal explanation, and the same is true of the Arabs and earlier

European writers, who were singularly deficient in artifices of

notation. In the solution of a problem

in the Lilaioati, in which " the fourth statement.

^ . not c .t 112olli
of a sixteenth of the faith ot tbree 12345164
quarters of two-thirds of a moiety" is

required, the work is written as indicated in the margin ;

whi:;h gives y/g^, or ^^^. In solving the problem, "Tell me,

dear woman, quickly, how much a fifth,

a quarter, a third, a half and a sixth statement.
1 1 1 1 1 29

make when added together," the work
5 i •> 9 fi '>'o

appears in the Lilawati as indicated in

the margin. In solving the problem, "Tell me what is the

residue of three, subtracting these frac-

tions ;" they expressed the work as in-
statement.

(licated, which it is apparent could not 154396 20
be understood without an explanation.

The Lilawati contains four rules for the reduction and as-

similation of fractions, as well as the application of their eight

fundamental rules of arithmetic to them. These rules are clear

and simple, and diifer very little from those used in niodera

practice. That the author regarded fractions as somewhat

difficult, is apparent from the following problem :

" Tell me the

result of dividing five by two and a third, and a sixth by a

third, if thy understanding, sharpened into confidence, be com-

petent to the division of fractions."

The notation of compound fractions varied with different

authors; thus with Lucas di Borgo | of |, or -|x|, v^

was represented as in the margin, where v^ denotes I t

oin, or times. Stifelius denoted three-fourths of two-
^
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thirds of one-seventh by writing the fractions nearly |

under one another as in the margin ;
and the same |

operation was indicated by Gemma Frisius thus : ^
3 12 11
T 1 § 1 Y

a notation simple and convenient.

In the writings of Lucas di Borgo, when two fractions are

to be added together or subtracted one from another, the

operations to be performed are indicated as follows :

8 9

fXI /« n ^^l- tV
12

where those quantities are to be multiplied together which are

connected by the lines. There seems to be very little diiference

between the operations in fractions in ancient and modern text-

books. In the works of Di Borgo and Tartaglia, the number of

cases and their subdivisions are unnecessarily multiplied, and

the reader is frequently more perplexed than instructed by the

minuteness of their explanations. It may be remarked that the

early writers seem to have been extremely embarrassed by the

usage and meaning of the term multiplication in the case of

fractions, where the product is less than the multiplicand; and

some of their methods of explaining the seeming inconsistency

are curious and ingenious.



CHAPTER II.

CLASSES OF COMMON FRACTIONS.

FRACTIONS
are divided into two general classes— Com-

mon and Decimal. A Common Fraction is a number of

equal parts of a unit, without any restriction as to the size of

those parts. A Decimal Fraction is a number of the decimal
divisions of a unit

;
that is, a number of tenths, hundredths,

etc.

This distinction of fractions originated in a dilference in the

notation, rather than in any essential difference in the fractions

themselves. It was seen that the decimal scale of notation,
when extended to the right of the units place, was capable of

expressing tenths, hundredths, etc., and that there would be a

great advantage in such an expression of them
;
and thus the

decimal fraction came to be regarded and treated as a distinct

class. A brief discussion of each will be given.
Common Fractions are variously classified, according to dif-

ferent considerations. The primary division is that based upon
their relative value compared with the Unit. Classifying them
in reference to this relation, we have Proper Fractions and

Improper Fractions. A Proper Fraction is one whose value
is less than a unit; that is, one which is properly a fraction ac-

cording to the primary conception of a fraction. An Improper
Fraction is one which is equal to or greater than a unit

;
that

is, one which is not properly a fraction in the primary meaning
of the term.

Another division of common fractions arises from the idea

of dividing a fraction into equal parts. A fraction originated
( 420 )
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in the division of the Unit into equal parts ; now, if we ex-

tend this idea to obtaining a number of equal parts of a fraction,

we get what is called a Gompound Fraction. The Compound
Fraction, it is thus seen, originated in the extension of the

primary idea of division, which gave rise to the simple fraction.

This idea of a compound fraction leads to the division of frac-

tions into two classes—Simple Fractions and Compound Frac-

tions. A Compound Fraction is technically defined as a fraction

of a fraction.

If we extend the fractional idea a little further, and suppose
the numerator, or denominator, or both, to become fractional, we
have what arithmeticians call a Complex Fraction. The

Complex Fraction may be defined as a -fraction whose numera-

tor, or denominator, or both, ai'e fractional. Whether the com-

plex fraction agrees with the definition of a fraction, or with

the functions ascribed to the numerator or the denominator of

a fraction, is a point which will be considered a little further

on
;
but its origin was a natural outgrowth of the principle of

pushing a notation to its limits. It should be noticed that the

complex fraction may also have originated in the expression

of the division of one fraction by another by writing the divisor

under the dividend with a line between them; but the proba-

bilities are that it originated as first indicated, by an extension

of the fractional idea.

Fractions, therefore, are divided with regard to their value, as

compared with the Unit, into Proper and Improper Fractions;

with regard to their form, into Simple, Compound, and Com-

plex. There is also another form of expressing fractional rela-

tions, so closely connected with the common fraction that it

may be embraced under the same general head. I refer to the

Continued Fraction, which will be treated with the general

subject of common fractions.

Improper Fractions.—According to the primary idea, a

fraction is regarded as a part of a unit, and hence as less than

a unit. But since we can speak of any number of fractional
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units as we do of integral units, there arises a fractional

expression whose value is greater than a unit. Thus we may
speak 0^ 5 fourths, 1 fourths, etc., although in a unit there are

only 4 fourths. These we call improper fractions; that is

they are improperly fractions from the primary idea of a

fraction. The improper fraction presents several points of

difficulty and interest, which will be briefly considered.

Take the expression $|; is this strictly a fraction? That it

is properly a fraction, appears from the definition of a fraction

and from the discussion just given. How, then, shall it be

read? If we read it "|- of a dollar," some one will object,

that there are only four fourths in a dollar, and hence you
cannot speak of five fourths of a dollar. If it be read "

f dollars,"

Ave will object, since there are not enough to make dollars, the

plural meaning two or more. But, says some one, the gram-
mars tell us that "the plural means more than one," and since

$1 is more than one, we may use the plural form and say "|
dollars." This, we reply, is a mere quibble, as the grammar-
ians contemplate only integers when they say

" more than

one," and really mean "two or more." The reading "| dol-

lars" is, therefore, not strictly correct.

How, then, should it be read? I think the correct reading

is "f of a dollar." We mean by it five of such parts as are

obtained by dividing a dollar into four equal parts. It is true

there are not five fourths in one dollar, and the reading does

not assume that there are. No one will object to saying f of

100 cents equals 125 cents, which is equivalent to saying f of

a dollar equals a dollar and a quarter. The fractional units

are fourths of a dollar, and the number of fractional units is

fve; hence the fraction is "five-fourths of a dollar." It is an

improper fraction— improperly a fraction from the primary
idea of a fraction— aad in the name "improper fraction" we

apparently enter a little protest against the absolute correctness

of the reading in view of the primary idea of the fraction. Jf

we have ^| or $i^, we can then say -|
dollars or

-^^i dollars,
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since, we then have ''two or more.'' This discussion seems to

Iiave been called for from the fact that the question is often

raised and debated as to what is the correct reading of the

improper fraction.

Gi'iriplex Fraction.—According to the strictest definition uf

a fraction, the complex fraction is an impossibility. This is

rendered evident from a consideration of the functions ascribed

to the denominator by the definition. The denominator shows

the number of equal parts into which the unit is divided
;

2

hence, in the complex fraction
|-,

the denominator, f, denotes

that tlie unit is divided into | equal parts. This is an impos-

sibility, as may be seen at least in two ways. First, we can

divide a unit into three or two equal parts, but not into one

part, since there will be no division; and if we cannot divide

it into one equal part, it is evident that we cannot divide it

into less than one equal part. Secondly, if any one doul)ts

the conclusion from this reasoning, let him take an apple and

endeavor to divide it into | equal pans. The effort I have

sometimes known to be in a high degree amusing, and always
conclusive of the correctness of the position assumed above.

A somewhat plausible argument in favor of the correctness

of the complex fraction is the following: In the algebraic frac-

tion -, the numerator and denominator are general expressions,

and hence may represent fractions as well as integers. If then

&=| we shall have a complex fraction. This method of reason-

ing is too general for arithmetic; even in algebra it would prove
(X0(/ c

that clearing the equation, -7-='^,
of fractions, does not clear it

of fractions, since in adx=bc, each term may be a fraction

The expression
- means a divided by b, and is a fraction only

so far as it coincides with our arithmetical idea of a fraction

We conclude, therefore, that strictly speaking, the complex
fraction is an impossibility. It is merely a convenient expres-

sion that one fraction is to be divided by another.
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Should the idea aad expression of a complex fraction, there-

fore, be discarded from arithmetic ? This does not follow, and

is not recommended. It is a convenient form of expressing the

division of one fraction by another, and ma}^ thus be retained.

Those who use it, however, should u:iderstaad that it is not

strictlv a fraction, according to the primary idea of a fraction,

but a representation of the division of a fraction by a fraction,

or of a whole number and a fraction when only one term is

fractional.

Is a Fraction a Number ? It has been stated by some writers,

and seems frequently to be the idea of pupils, that a fraction is

not a num'ier. This, however, is a mistake, as will appear
from a slight consideration of the matter. Xewton's definition

of number provides for the fractional number when the object

measured is a definite part of the measure
;

it consequently ap-

pears that the fraction is a number, if we accept his definition

as correct. The definition, "A. Fraction is a number of equal

parts of unity," also makes it clear that a fraction is a num-

ber. Again, if it is not a number, what kind of a quantity is

it; and why should it be treated in arithmetic, the science of

numbers ? Ftae inches is certainly a number; hence its equiv-

alent, j^Uf^-^ioeZ/^/i.s of afoot, is also a number. Numbers are

of two classes, integers a,D.d fractions ; and fractions are num-

bers, as much so as integers. The fractional number, it will be

noticed, involves two ideas—first, the integral unit; and second,

the fractional unit. In an integer we have the idea of a num-

ber of units
;

in the fraction we have, not only an idea of a

number of units, but also the relation of the fractional unit to

the integral unit.

Is a Fraction a Denominate Number ? It has been affirmed

by some authors that "fractions are a species of denominate

numbers." This, however, is true only in a very limited or

partial sense. Three quarts is not precisely the same as three-

fourths of a gallon, though they are equal in value. In the

latter case, there is a direct aud necessary relation of a part to
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a unit; in the former case, no such relation is implied. To dn-

derstand the fraction, three-fourths of a gallon, the idea of the

unit, gallon, must be in the mind; in three quarts no such con-

dition is necessary. In one case there are two units considered,

the gallon and the fourth; in the other case but one unit, the

quart,—not considering the unit of the pure numbers, three

and /oar themselves, i'ljttr^/ts have reference to the integral

unit, and always imply this relation
; quarts have no reference

to gallons, and do not imply gallons.

Again, the fraction three-fourths may be used entirely dis-

tinct from any denominate unit, and in this case it must be an

abstract, not a denominate number. Two is one-fourth of eight ;

here the measure of this relation, one-fourth, cannot but be ab-

stract. It is evident, therefore, that a fraction is not a denom-

inate number. There are abstract and denominate fractions, as

there are abstract and denominate integers.



CHAPTER III.

TREATMENT OP COMMON FRACTIONS.

A
FRACTION has been defined as a number of the equal

parts of a unit. The parts into which the unit is divided

arc caWnd fractional units. A fraction jnay, therefore, also be

defined as a number of fractional uaits. . Fractions are divided,

as previously stated, into Common and Decimal Fractions.

A Common Fraction is a number of fractional units expressed

with a numerator and a denominator; as two-thirds, written f.

The denominator of a fraction denotes the number of equal

parts into which the unit is divided. The numerator of a frac-

tion denotes the number of fractional units in the fraction. A
common fraction is usually expressed by writing the numerator

above the denominator witli a line between them. Care should

be taken not to deline the denominator as the "figure below the

line," and the numerator as the "figure above the line ;" and

then speak of multiplying the numerator and denominator.

This will lead one to suppose that figures may be multiplied,

rather than the numbers which they represent. It is surpris-

ing that so many writers upon arithmetic should have fallen

into this error.

Gases.—Fractions admit of the same general treatment as

integers; we therefore have the same fundamental cases in

fractions as in whole numbers. These cases are all embraced

under the general processes of Si/nthesis, Anali/sis, and Com-

parison. The cases of synthesis and analysis are the same as

in whole numbers. To perform the synthetic and analytic

processes, we need to change fractions from one form to another ;

(426)
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Outline

of the

Cases
of

Fractions

1, Reduction.

2. Audition.

3. Subtraction.

4. Multiplication.

5. Division.

6. Relation.

hence Reduclion enters largely into the treatment of fractions.

The comparison of fractions gives rise to several cases called

the Relation of Fractions, which do not appear in whole num-

bers. The various cases of fractions then are
; Reduction, Ad-

dition, Subtraction, Multiplication, Division, Relation, Com-

position, Factoring, Common Divisor, Common Multiple, In-

volution, and Evolution.

A complete view of the fundamental processes is presented
in the following logical outline. Composition, Factoring, Invo-

lution, and Evolution, presenting no points different from those

of whole numbers, are omitted in the treatment. The other

cases arising out of Comparison apply equally to integers and

fractions, and do not vequire a distinct treatment.

1. Number to a Fraction.

2. Fraction to a Number.
3. To Higher Terms.
4. To Lower Terms.
5. Compound to Simple.
6. Dissimilar to Similar.

(1. The denominators alike.

(2. The denominators unlike.

(1. The denoniinators alike.

(2. The denoniinators unlike.

1. Fraction by a Number.
2. Number by a Fraction.

3. Fraction by a Fraction.

1. Fraction by a Number.
2. Number by a Fraction.

3. Fraction by a Fraction.

1. Number to a Number.
2. Fraction to a Number.
3. Number to a Fraction.

4. Fraction to a Fraction.

The "Relation of Fractions" is a new division of the subject

of fractions: it was first published in the Normal Written

Arithmetic, in 1863, and has since been introduced into several

other works on written arithmetic, and will probably be gen-

erally adopted.
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3Iethods of Treatment.—There are two methods of develop-

mg the subject of common fractions, which may be distinguished

as the Inductive and Deductive methods. These two methods

are entirely distinct in principle and form; and the distinction,

being new, seems worthy of special attention.

By the Inductive Method, we solve each case by analysis,

and derive the rules, or methods of operation, from these anal-

yses, by inference or induction. The method is called induc-

tive, because it proceeds from the analysis of particular problems
1o a general method which applies to all problems of a given

class. The solutions, it will be noticed, are independent of any

previously established principles of fractions, each case being

treated by the method of arithmetical analysis which reasons

to and from the Unit.

To illustrate the method we will take the problem,
" In | how

many twentieths?" We analyze this as follows: One equals

|-^,
and ^ equals ^ of 20 twentieths, or 5 twentieths; and |

equals 8 times 5 twentieths, or 15 twentieths; hence | equals

\^. Now, by examining this solution, we see that we multiply
the numerator of | by the number which denotes how many
times /bur, the given denominator, equals the required denom-

inator, twenty, which is the same as multiplying both terms of |

by the same number, five ; hence we derive the rule, "to reduce

a fraction to higher terms, multiply both terms by the same

number."

For another illustration, take the converse of this problem,
"In l^f how many fourths?" The solution is as follows: One

equals f^, and \ equals \ of f^, which is ^; hence i of the

number of 20ths equals the number of 4ths
;

1- of 15 is 3, hence

i| equals f. This is the analysis of the problem; we then

proceed to derive a rule by which all such problems may be

solved. By examining this analysis, we see that we take the

same part of the numerator for the numerator of the required

fraction that the denominator of the required fraction is of the

denominator of the given fraction
;
hence we derive the rule,
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"to reduce a fraction to lower terms divide both numerator and

denominator by the same number." This rule is thus obtained

by analyzing the analysis; it may also be obtained by compar-

ing the two fractions. Thus, comparing | and ^^, we see that

3 equals 15 divided by 5, and 4 equals 20 divided by 5—that

is, both divided by the same number— and seeing that this

principle holds good in several cases, we infer the rule.

By the Deductive Method we first establish a few general

principles by demonstration, and then derive the rules, or

methods of operation, from these principles. The method is

called deductive because it proceeds from the general principle

to the particular problem. To illustrate this method, let us

solve the same problem,
" Reduce | to twentieths." By a gen-

eral proposition which we assume has been demonstrated, we
have the principle,

"
Multiplying both terms of a fraction by any

number does not change its value;" hence we may reduce | to

twentieths by multiplying both terms by 5, which will give

the required denominator, and we have | equal to ^^.

For another illustration, we will solve the converse problem,
"Reduce ^^ to fourths." By a general proposition, which we
assume has been demonstrated, we have the principle,

" Divid-

ing both terms of a fraction by the same number does not change
its value ;" hence we may reduce ^^ to fourths by dividing

both numerator and denominator by any number which will

give the required denominator. This number, we see, is 5
;

hence, dividing both numerator and denominator by 5, we
have ^ equal to |.

We will illustrate the difference of these two methods still

further by a problem in compound fractions. Take the ques-

tion, "What is f off?" The analysis is as follows: ^ of i is

one of the three equal parts into which \ may be di vided
;

if each

5th is divided into 3 equal parts, -f
or the Unit will be divided

into 5 times 3, or 15 equal parts, and each part will be
-j^^^;

hence

^ of -L is
-^j,

and ^ of 4 is 4 times J^, or j\, and § of | is 2 times

rV 0^ TS- Examining this analysis, we see that we have mul-
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tiplied the two denominators together and the two numerators

together, from which we derive the rule for the reduction of

compound fraciions. By the deductive method we would

reason as follows: By a principle previously demonstrated, ^
of i, which is the same as dividing 4 by 3, is y^- ; and f of

|-

by another principle, is ^V ^^ ^^^^^ ^^ noticed that the deduc-

tive method is much shorter than the inductive method, because

while the former explains every point involved, the latter makes

use of principles previously demonstrated. If in the deductive

solution, we should stop and demonstrate the principles we are to

use, it would make the solution much longer. The ditfereuce

of the two methods can also be clearly illustrated ia the divi-

sion and relation of fractions. In my higher arithmetic the two

methods are presented in each case, where a full comparison

may be made of them.

The distinction between these two methods is broad and

emphatic. By the Inductive Method the problem is solved

without any reference to any previously established principle ;

by the Deductive Method, the solution is derived from a gen-

eral principle supposed to have been previously demonstrated.

Both of these methods may be used in the development of frac-

tions, and it is a question worthy of consideration which is to

be preferred.

The Inductive Method is believed to be simpler and more

easily understood by young pupils. It is especially adapted to

beginners, since it proceeds according to the simple steps of

analysis, or the comparison of the collection with the unit. It

also follows the law of the development of the young mind—
" from the particular to the general." It is especially suited

to ihe subject of Mental Arithmetic, on account of its simplicity

and the mental discipline it is calculated to afford.

The Deductive Method is more difficult in thought than the

Inductive Method. Young pupils always find a difficulty in

founding a process of reasoning upon previously established

principles. It is not natural for the youthful mind to reason from
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generals to particulars. Besides, the demonstrations of these

general principles are not readily understood by young pupils.

With much experience as .a teacher, I state that it is a rare

thing to find a pupil who can give a good logical demonstration

of these principles, and text-books and teachers often do no

better. The so-called demonstrations in many of our text-books

are mere explanations or illustrations, and not logical proofs of

the propositions. To say that "
multiplying the denominator

of a fraction increases the number of parts of the fraction, and

diminishes their size in the same proportion," is a loose sort of

statement that comes very far short of scientific demonstration.

We will consider these principles and their demonstration.

Fundamental Principles.—In the Deductive Method, we
have stated, we first establish several general principles, and

then derive the rules or methods of operation from them.

These principles relate to the multiplication of the numerator

and denominator of a fraction. They may be demonstrated in

two distinct ways. One of these is founded upon the princi-

ples of division
;
the other upon the nature of the fraction and

the functions of the numerator and denominator. All the

various methods in our text-books on arithmetic may be cm-

braced under these two general methods.

The Method of Division is employed by a large majority of

our writers on arithmetic. This method consists in regarding
the fraction as an expression of an unexecuted division, the

numerator representing the dividend, and the denominator the

divisor, and the value of the fraction being the quotient. Then,

by principles of division presumed to have been previously

established, since dividing the dividend divides the quotient,

dividing the numerator divides the fraction ; and since multi

plying the divisor divides the quotient, multiplying the denom

inator divides the fraction, etc.

The Fractional Method of demonstrating these fundamental

principles is based upon the nature of the fraction itself. It

regards the fraciion as a number of equal parts of a unit, an^
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determines the result of these operations by comparing the

fractional unit with the Unit. Thus, if we multiply the de-

nominator of a fraction by any number, as three, the Unit will

be divided into three times as many equal parts, hence each

part will be one-third as large as before; and the same number

of parts being taken, the value of the fraction will be one-third

as large as before. In a similar manner all the principles may
be demonstrated.

The Fractional Method is undoubtedly the correct one. The

Method of Division is liable to several objections, and should

be discarded in teaching and in writing text-books, as appears
from several considerations.

First, it is illogical to leave the conception of a fraction and

pass to that of division, to establish a principle of a fraction.

A fraction and an expression of division are two distinct

things, and should not be confounded. The fraction | is

three-fourths, and does not mean 3 divided by 4. Jt is true

that the expression | does also mean 3 divided by 4; but'when

we regard it as a fraction we have and should have no idea of

the division of three by four. It is, therefore, illogical, I say, to

convert a fraction into a division of one number by another to

attain to a principle of the fraction.

Secondly, it is not only illogical to treat the subject in this

manner, but it does not give the learner the true idea of it.

He may see that multiplying the denominator does divide the

value of the fraction, but he will not see down into the core of

the matter, why it does so. The method, to say the least,

gives but a superficial view of the subject, and is therefore

objectionable. If the fraction will admit of a simple treatment
as a fraction, it is absurd to transform it into something else

to prove its, principles.

It may be said in favor of the method of division, that it is

simpler and more easily understood by .« I-earner; but this

both theory and experience in instruction will disprove. I

believe that the pupil can quite as readily see that dividing
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the numerator of a fraction divides the value of the fraction, as

he can see that dividing the dividend divides the quotient; and

the same holds for the other principles. This method may
sometimes seem a little easier to the learner, because it

depends upon an assumed principle ;
but require the pupil to

prove that principle, and he will find it quite as difficult as to

prove the fractional principle itself. For the method of demon-

strating these theorems which the author prefers in arithmetic,

the reader is referred to his arithmetical worka

28



CHAPTER IV.

CONTINUED FRACTIONS.

EVERY
new idea, when once fixed, becomes a starting point

from which we pass to other new ideas. The mind never

rests satisfied with the old; it is always reaching out beyond
the known into the unknown. "Still sighs the world for some-

thing new," is as true in science as in society. Given a new

conception, and the tendency is to push it forward until it leads

us to other ideas and truths not anticipated in the original con-

ception. Thus, from the original idea of a simple fraction

originated the compound and complex fractions; and thus also

by extending the original conception, arose the Continued Frac-

tion.

Definition.—A Continued Fraction is a fraction whose nu-

merator is 1, and denominator an integer plus a fraction whose

numerator is also 1 and denominator a similar fraction, and so

on. Thus, TV5=iirT
16 11^ 8

Several recent authors, for convenience, write a continued

fraction with the sign of addition between the denominators;

thus,
—— — -7-

-—
.

'24-3+44-5
Origin.—Continued Fractions were first suggested to the

world in a work by Cataldi, published in 1613, at Bologna.
Cataldi reduces the square roots of even numbers to continued

fractions, and then uses these fractions in approximation, though
without the modern rule by which each approximation is educed

from the preceding two. Continued Fractions were also pro-

( 434 )
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posed about the year IfiTO, by Lord Brouncker, President of

the Royal Society. It is known that in order to express the

ratio of the circumscribed square to the circumference of the

circle, he derived the following continued -. , i
J- I* .7 1^ Q

fraction given in the margin ;
but -by what ""•"sITTI

means he was led to it, has not been as-

certained. Dr. Wallis subsequently added to and improved the

subject, giving a general method of reducing all kinds of con-

tinued fractions to common fractions.

The complete development of these fractions, with their ap-

plication to the solution of numerical equations and problems
in indeterminate analysis, is due to the Continental mathemati-

cians. Huygens is said to have explained the manner of form-

ing the fractions by continual divisions, and to have demon-

strated the principal properties of the converging fractions

which result from them. John Bernoulli made a happy and

useful application of the continued fraction to a new species of

calculation which he devised for facilitating the construction of

tables of proportional parts.

Treatment.—The subject of continued fractions is most con-

veniently treated by the algebraic method, and may be found

quite fully presented in some of the works on higher algebra.

In this place we shall briefly consider : 1. Reducing common
fractions to continued fractions; 2. Reducii)g continued frac-

tions to common fractions; 3. Their application ;
4. Their prin-

ciples.

We shall first show how a common fraction may be reduced

to a continued fraction. Take the common fraction
y^g5_. Dividing

both numerator and denominator by 68,

we have the first expression in the mar- 2121 2~|~T
-,..,. , in "168 '315.

gm ; dividmg the numerator and denom. '^1

inator of the second fraction by 21, we g , y

have the second expression in the margin;
"

"r'4_|_i

dividing again by 5, we have the third

expression in the margin; which finishes the division, as
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the numerator of the last fraction is unity. The terms ^, ^. ^,

etc., are called the first, second, third, etc., partial fractions.

The same result may be obtained by dividing as in finding

the greatest common divisor, and taking the several quotients

for the successive denominators. Taking -^Jj, and dividing as

if to find the greatest common divisor of its terms,

we see that the resulting quotients are the same as 68
DO

the denominators of the partial fractions. Hence we _
derive the following rule for reducing common ^

fractions to continued fractions : Find the greatest

157
136

TT
20

3

4

. 5
common divisor of the terms of the given fraction ;

the reciprocals of the successive quotients will be the partial

fractions which constitute the continued fraction required.

Let us now see how a continued fraction may be reduced to

a common fraction. This reduction may be effected in two

ways ; by beginning at the last fraction and working up,

or by beginning at the first fraction and working down.

If we take the continued fraction given in the margin
and reduce the complex fraction formed

by the last two terms to a simple frac-
3~[~T

tion, we shall have
-^j. Taking this result '

2_j_i_^
and the preceding partial fraction together,

^

15 21
we have —— -—

-, which reduced equals -^. Joining this to the
2 + 21 47

1 25 47
preceding term, we have

-j- , ^> which equals
—

. Finally,

— —=:
, the value of the fraction.

3+68 251

By beginning at the first fraction, approximate values of the

continued fraction may be obtained by respectively reducing

two, three, or more of the partial fractions to simple fractions.

Thus, in the fraction given above, the first approximate value

.
, , nil 1,^.^.111

IS *
;
the second -— —

-, or —-
;
the third is -^ ,

-r-
, -^, of

o+l 4 o+l + J

—-
;
the fourth -—

;
the fifth -zrz^.

11 48 251
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By exhibiting this process in an analytic form, a law may be

discovered which presents a simpler and easier method of find-

ing approximate values than either of the others.

Let us take the fraction in the margin and find 2 1 1
'

3_|_ 1

its successive approximate values, and notice the •

Tljn
law J the derivation of one approximation from

the previous ones. The work may be written as follows:

2 =^, 1st approx. val.

Wj= — •

=f, 2d
+i 3x2+1

^

1

^+1^^=2+5 3x5+1 3x5+1' 2+i ' = ——! — 1 16 Q^ " «

3x5+1 (3x2+l)x5+2 -7x5+2 -^7' ^^

+^+l:rT""2+5+i ^ (3X5+l)X4+3 ^
3x(5+i)+l {(3x2+l)x5+2}x 4+3x2+1

16x4+3 ^,,
37x4+7

^^^"

We take ^, the first term of the continued fraction, for the first

approximate value. Reducing the complex fraction formed by
the first two terms of the continued fraction, we have ^ for the

second approximate value. Continuing the reduction, we

obtain |^f
and y^- for the remaining values. Examining the

last two reductions, we find that the third approximate value

is obtained by multiplying the terms of the second approximate
fraction by the denominator of the third partial fraction, and

adding to these products the corresponding terms of the first

approximate fraction. We see also that the fourth approximate

value is equal to the product of the terms of the third approxi-

mate value by the denominator of the fourth partial fraction,

plus the corresponding terms of the second approximation.

Hence we derive the following rule :

For the firat approximate value take the first partial

fraction; for the second value, reduce the complex fraction

formed by the first two terms of the continued fraction ; for
each succeeding approximate value, Tnultiply both terms of
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the approximalion last obtained by the next denominator of
the continued fraction, and add to the products the corre-

sponding terms of the preceding approximation.
We will now show the application of continued fractions by

the solution of several practical questions.

1. Let it be required to express approximately, in the fraction

of a day, the difference between a solar year and 365 days.

By the old reckoning, the excess of the solar year over 365

days was 5 hours, 48 minutes, 48 seconds. Reducing, we tind this

excess equals 20,928 seconds, and 24 hours equals 86,400 seconds.

Therefore, the true value of the fraction=|g-|||=i4|-. Now,-

converting \^^ into a continued fraction, we have the expres-

sion given in the margin, from which,

by the last rule, we obtain the approx- tstt=4 i i

imate values ^ -^ S_ -^J- -3-9- ^SlS. ~f"TirTluiaic vaiuco 4, 29> 33) 128' 161> 450* l^3_LJ
The fraction ^ agrees with the ^+^

correction introduced into the calendar by Julius Caesar, by
means of bissextile or leap year. The fraction

3*3
is the cor-

rection used by the Persian astronomers, who add 8 days in

every 33 years, by having 7 regular leap-years, and then de-

ferring the eighth for 5 years,

2. Required the approximate ratio of the English foot to

the French metre containing 39.371 inches.

The true ratio is |-fftj. Reducing to a continued fraction,

we find some of the first approximate values to be \, -^^, y^g,

ij> ff' ToV Hence the foot is to the metre as 3 to 10, nearly;
a more correct ratio is 32 to 105.

3. To find some of the approximate values of the ratio of

the circumference of a circle to the diameter.

Taking the value of the circumference of the circle whose

diameter is 1, to 10 places of decimals, the ratio of the diameter

to the circumference will be expressed by the common fraction

afIfrmHo- Reducing to a continued fraction, some of the

first approximate values are, i-, ^^, i||, ii-i. Inverting these

fractions, we have the ratio of the circumference to the diame-
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ter, which is the ratio commonly used. The second gives ^^
which is the ratio said to have been found by Archimedes; and
the fourth gives ff|, which is the salne as that determined by

Metius, which is more exact than 3.141592, from which it is de-

rived.

Continued fractions have been employed for obtaining elegant

approximations to the roots of surds. Thus, let it be required
to find the square root of ^, or the ratio of the side of a square
to its diagonal.

The square root of ^, or s/h equals
—-. Dividing both
v/ 2

terms by the numerator we have ——= . Multi-
n/2 l+v/2— 1

1
•

^2 1

plying both terms of the fraction — by >/2+l, it will be-

'^^^^ -o I
, = o_L

—
i"- Substituting, we have

v/2 1+1

2+v^2—r

Again, the fraction—— becomes, as before, equal to
2+V2-1

1

and by thus continuing the process, we find —— to equal the

following continued fraction :

":-i-i
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There are several beautiful principles belonging to the ap-

proximate values of continued fractions, a few of which we

present in this place. The values just obtained for the ratio

of the side of a square to its diagonal are used as illustrations.

1. The approximate fractions are alternately too small and

too large. Thus, f, ff-» 99» ^^^ ^^^ small, while \, j-, ||, and

^ll are too large.

2. Any one of these fractions differs from the true value

of the continued fraction by a quantity which is less than the

reciprocal of the square of its denominator. Thus, \^, which

is the ratio much used by carpenters in cutting braces, differs

from the true ratio by a quantity less than (t7)'^=2 8 9'

3. Any two consecutive approximate fractions, when re-

duced to a common denominator, will differ by a unit in their

numerators. Thus ^ and \^, when reduced to a common de-

nominator, become -^^ and -f^.

4. All approximate fractions are in their lowest terms. If

they were not, the difference of the numerators of two consec-

utive approximate fractions, when reduced to a common denom-

inator, would differ by more than unity. For each numerator

is multiplied by the denominator of the other fraction, hence

one derived numerator contains the original numerator, and

the other the original denominator of either fraction. If then

there were a common factor, it must be a factor of the difference

of the numerators
;
and this difference would be greater than

unity, which is contrary to the previous principle.

The successive approximate values are called the convergents
of the fraction. The numerator or denominator of the convergent
is called, by Sylvester, a cumulant. A non-terminating contin-

ued fraction whose quotients recur, is called a periodical or

recurring continued fraction. Its value can be shown to be

equal to one of the roots of a quadratic equation. It can also

be shown that every quadratic surd gives rise to an equivalent

periodic continued fraction.
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CHAPTER I.

ORIGIN OP DECIMALS.

THE
invention of the Decimal Fraction, like the invention of

the Arabic scale, was one of the happy strokes of genius.

The common fraction was expressed by a notation quite dis-

tinct from that of integers, and required not only a different

treatment, but one much more complicated and difficult. The

expression of the decimal divisions of the unit in the same scale

with integers, and the possibility of reducing common fractions

to the decimal form, wrought quite a revolution in the science

of arithmetic, and has greatly simplified it. This new method

of expressing fractions gave rise to a much simpler method of

treating them
;
and has elevated the decimal fraction into dis-

tinction, and gained for it an independent consideration.

Oi-igin.
—The Decimal Fraction had its origin within the last

three centuries. Theoretically it may have originated in either

of two ways. There may have been a transition from the com-

mon fraction to the decimal, by noticing that a number of tenths,

hundredths, etc., might be expressed by the decimal scale.

This is the manner in which the subject is usually presented in

the text-books of the present day. Thus, after the pupil is made

familiar with the fractions yV) tW' ^^^-i ^^ '^^ stated that -^^ niay

be expressed thus, .1
; y^ thus, .01, etc. The decimal fraction

could also have arisen directly from the decimal scale. Thus,

since the law of the scale is, that terms diminish in value from

left to right in a ten-fold ratio, the idea of carrying the scale on

to the right of the unit would naturally present itself, and such

a continuation would give rise to the decimal. As the unit

(443)
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was oae-ten-th of the tens, the first place to the right of the

unit would be one-tenth of the unit
;
the second place, one-tenth

of one-tenth, or one-hundredth, etc. These two methods of

conceiving the origin of decimals are entirely distinct; indeed,

they are the converse of each other. In one case we pass from
the common fraction to its expression in the decimal scale

;
in

the other we pass from the expression in the decimal scale

to the fraction. This distinction, it may be remarked, has a

practical bearing upon the method of teaching the subject. In
which way it did actually originate is not definitely known,
though De Morgan holds that the table of compound interest

suggested decimal fractions to Stevinus,

History.—The introduction of decimal fractions was formerly
ascribed to Regiomontanus, but subsequent investigations hat^e

shovi^n this to be incorrect. The mistake seems to have arisen

from the confused manner in which Wallis stated that Regio-
montanus introduced the decimal radius into trigonometry in

place of the sexagesimal. Decimal fractions were introduced so

gradually that it is diflicult, if not impossible, to assign their

origin to any one person. The earlies,t indications of the deci-

mal idea are found in a work published in 1525 by a French
mathematician named Orontius Fineus. In extracting the

square root of 10, he extracts the approximate root of 10000000
and obtains 3162. He then separates 162, which with him is

not a fraction, but only a means of procuring fractions, and

converts it, after the scientific custom of the times, into sexa-

gesimal fractions (having as base 60), so that the square root

of 10 would be expressed 3 9' 43" 12'", or 3+^9^+^if^-f^2_^.
He concludes that chapter of his book by stating that in this

162, 1 is a tenth, 6 is six hundredths, etc., so that it would seem
that he had quite a clear notion of decimals.

Tartaglia, in 1556, gives a full account of the method of

Orontius, but prefers the common fractional form 'i-^^^Q. In

Recorde's Whetstone of Witte, 1557, the same rule is copied;

but after obtaining three decimal places of the square root, the



ORIGIN OF DECIMALS. 445

remainder is written as a common fraction. Peter Ramus, in

an arithmetic published in Paris in 1584 or 1592, also quotes

the rule of Orontius.

In 1585, Steviuus wrote a special treatise in French, called

" The DisME, by the which we can operate with whole numbers

without fr-actiona.'' It was first published in Dutch about the

year 1590, and describes in very express and simple terms the

advantages to be derived from this new arithmetic. Decimals

are called nombrea de disme: those in the first place whose sign

is (1) are called primes, those in the second place whose sign is

(2) are called seconds, and so on
;
whilst all integers are char-

acterized by the sign (0), which is put over the last digit. The

following are some of his arithmetical operations by means of

decimals, representing multiplication and division.

(0) (1) (
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admits his dismes, wlien he passes to their form he converts

them into integers. Still, he must be regarded as the real in-

ventor and introducer of the system of decimals. De Morgan

says "The Disme is the first announcement of the use of deci-

mal fractions ;" and Dr. Peacock also remarks that " the first

notice of decimals, properly so called, is to be found in La

Disme.''''

This work of Stevinus was translated mto English in 1608,

by Richard Norton, under the title, "Ditime, the arte of tenths,

or decimal Arithmetike, teaching how to perform all computa-
tions whatsoever by whole numbers without fractions, by the

four principles of common Arithmetike : namely, addition, sub-

traction, multiplication, and division, invented by the excellent

mathematician, Simon Stevin." In this work the notation is

changed to

(1) (2) (3) (4)

3, 7, 5, 9.

The introduction of decimals into works on arithmetic was

slow, eveii after their use had been shown by Stevinus. One

of the earliest English works in which decimal fractions are

really used, is that of Richard Witt, 1613, containing tables

of half-yearly and compound interest. These tables are con-

structed for ten million pounds; seven figures are cut o'fl",
and

the reduction to shillings and pence, with a temporary decimal

separation, is introduced when wanted. Thus, when the quar-

terly table of amounts of interest at ten per cent, is used for

three years, the principal being 100^., in the table stands 1372-

66429, which multiplied by 100 and seven places cut off, gives

the first line of the following citation :

" The Worke
( 1 1372 66429

Facit \
sh 13 2858

(d 3 4296."

Giving 1372Z. 13.s. Sd. for the answer. The tables ore expressly

stated to consist of nuvieralors, with 100... for a denominator.

>'apier's work, published in 1617, contains a treatise on deci^
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mals, though he does not use the decimal point, except in one

or two instances, but rather indicates the place of the decimal

figures by primes, seconds, etc., according to the method of

Stevinus. The author expressly attributes the origin of dec-

imals to Stevinus.

In 1619 we find the contents of Norton's treatise embodied

in an English work entitled, "The Art of Tens, or Decimall

Arithmetike, wherein the art of Arithmetike is taught in a

more exact and perfect method, avoyding the intricacies of

fractions. Exercised by Henry L3'te, Gentlen\an, and by him

set forth for his countries good. London, 1619." It is

dedicated to Charles, Prince of Wales, and he tells us that he

has been requested for ten years to publish his exercises in

decimall Arithmetike. After enhirging upon the advantages
which attend the knowledge of this arithmetic to landlords

and tenants, merchants and tradesmen, surveyors, gangers,

farmers, etc., and all men's affairs, whether by sea or land, he

adds, "if God spare my life, I will spend some time in most

cities of this land for my countries good to teach this art."

This author was one of the earliest users of decimal fractions

In the year 1619 there appeared, at Frankfort, a work on

decimal arithmetic by Johann Hartman Beyern, in which the

author states that he first thought upon the subject in the year

1597, but that he was prevented from pursuing it for many
years by the little leisure afforded him from his professional

pursuits. He makes no mention of Stevinus, but assumes

throughout the invention as his own The decimal places

are indicated b}'" the superscription of the Roman numerals,

though the exponent corresponding to every digit in the

decimal places is not always put down. Thus, 34.1426 is

written 34°.li 4" 2"i 6^^, or 34°.14"2G^v, or 34°.1426^^'.

The author must have been acquainted with the Rahdologia
of Napier, as one chapter of his work is devoted to the

explanation of the construction and use of these rods, which

enjoyed a most extraordinary popularity at that period; and



448 THE PHILOSOPHY OF ARITHMETIC.

he could not, consequently, have been ignorant of Napier's

notation or of the work of Stevinus; and we may therefore

doubt the truth of his pretensions to being the originator of

the system of decimals.

Albert Girard published an edition of the works of Stevinus

in 1625, and in the solution of the equation x^— 3x—l by a

table of sines, of which method he was the author,

we find the three roots as in the margin. On
^'o??)

another occasion, he denotes the separation of the
^ ^^^

C

integers and decimals by a vertical line. He

does not always adhere to this simple notation, as we after-

wards find the square root of 4^ expressed by 20816(4) ;
and

on another occasion we find similar vestiges of the original

notation of Stevinus.

Oughtred is said to have contributed much to the propaga-

tion and general introduction of decimal arithmetic. In the

first chapter of his Clavis, published in 1631, we find an

explanation of decimal notation. The integers he separates

from the decimal, or parts, by a mark, L, which he calls the

separatrix, as in the examples, 0[56, 48^5,
for .56 and 48.5;

and in giving examples of the common operations of arithmetic

he unites them under common rules. His view of the theory

of decimals was generally adopted, and in some cases his

notation also, by English writers on arithmetic for more than

thirty years after this period.

In " Webster's tables for simple interest," etc., 1634, decimals

seem to be treated as a thing generally known, though no

decimal point is used. During the same year, 1634, Peter

Herigone, of Paris, published a work in which he introduces

the decimal fraction of Stevinus, having a chapter
" des nombres

de la dixme." The mark of the decimal is made by marking

the place where the last figure comes. Thus when 137 livres

16 sous is to be taken 23 years 1 months, the product of 1378'

and 23583'" is found to be 32497374"", or 3249 liv. 14 sous,

8 deniers. In 1633, John Johnson (Survaighor) published a
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work, the second part of which is called "Decimall Arithmatick

wherby all fractionall operations are wrought, in whole num-

bers," etc. In his decimal fractions Johnson has the rudest

form of notation
;

for he generally writes the places of decimals
1.2.3.4.5.

over the figures; thus. 146.03817 would be UtViOSSlt. In

1640, the "Arithmetica Practica" of Adrian Metius contains

sexagesimal fractions, but not decimal ones
;
and a work by

J oh. Henr. Alsted, in 1641, containing a slight treatise on

arithmetic and algebra, says notliiug about decimal fractions.

About this time the subject of decimals must have been

pretty generally understood; for in "Moore's Arithmetick,"

1650, the subject of decimals is quite thoroughly presented,

and the contracted methods of multiplication and division are

given. Noah Bridges, in his
" Arithmetick Natural and Deci-

mal," has an appendix on decimals, though the author expresses

his disapproval of the use which some would make of decimals,

averring that the rule of practice is more convenient in many
cases. John Wallis, 1657, uses the old decimal notation 12:345,

but he afterwards adopts the usual point in his algebra; and

subsequently decimals seem to have been no longer regarded
as a novelty, but took their place along with the other accepted

subjects and methods of arithmetic.

It may be supposed that the publication of the tables of log-

arithms was necessarily connected with the knowledge and use

of decimal arithmetic
;
but this. Dr. Peacock thinks, is not so.

The theory of absolute indices, in its general form at least, was

at that time unknown
;
and logarithms were not considered

as the indices of the base, but as a measure of ratios merely.
Under this view of their theory, it was a matter of indifference

whether we assumed the measure of the ratio of 10 to 1 to be

one, ten, a hundred, ten millions, or ten billions, the number

assumed by Briggs in his system of logarithms. Thus, whether

the logarithms are expressed by decimals or integers, they will

have the s^me characteridirs, and their use in calculation is

29
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exactly the same. It is under the integral forms that the loga-

rithms are given in the earlier tables, such as those of Napier,

Briggs, Kepler, etc.

This statement will sufficiently explain the reason why no

notice is taken of decimals in the elaborate explanations which

are given of the theory and construction of logarithms by Na-

pier, Briggs, and Kepler ;
and indeed we find no mention of them

in any English author between 1G19 and 1631. In that year

the Logarithmical Arithmetike was published by Gellibrand,

a friend of Briggs who died the year before, with a much more

detailed and popular explanation of the doctrine of logarithms

than was to be found in Briggs's Arithmetica Logarithmica. It

is there stated that the logarithms of 19695, 1969 fj, 19^^^,%^^ are

respectively 4,29435 etc., 3,29435 etc., l,294o5 etc., differing

merely in their characteristic; and y\, j%9jj\,
are called decimal

fractions. Rules are also given for the reduction of vulgar

fractious to decimals, by a simple proportion; and, lastly, a

table for the reduction of shillings, pence, and farthings to deci-

mals of a pound sterling.

The Decimal Point.—The final and greatest improvement

in' the system of decimal arithmetic, by which the notations of

decimals and integers are assimilated, was the introduction of

the decimal point, and much labor has been spent to ascertain

its author. According to Dr. Peacock, the decimal point was

introduced by Napier, the illustrious inventor of logarithms.

In writing decimals Napier seems to have generally employed

the method of Stevinus, which was to indicate the decimal

places by primes, seconds, etc.
;
but there are at least two in-

stances in which he used a character as a decimal separatrix.

The first is an example of division in which he writes 1993,273,

using a comma, and then presents his answer in the form 1993

2' 1" 3'". The other instance occurs in a problem in multi-

[)lication, in which he draws a line down through the places of

the partial products that would be occupied by the decimal

point; but in the sum he uses the exponents of Stevinus,
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which thus combines both methods, and stands 1994
]
9' 1"

The problems in which these occur are found in the Rahdol-

ogia, published in 1617, in which

he mentions the invention of Stevi-. , ,
^j

'

„

nus in terms of highest praise, and
i^^.

explains his notation without notic- 402

ing his own simplification of it. 429

The use of the comma, above re- 861094,000(1993,273
A ^ • . J

• u 432
rcrred to, is presented in the ac- SS88

com[)anyiug solution, in which it 3888
IS required to divide 861094 by 1296

482. I present but a part of the etc.

process of division. _., ,. , . ,„„„^,.„^
^, „ ,, X- 1 7- The quotient IS 1993,273,The use of the vertical line 1993 2' 7" 3"'

is found in an example of ab-

breviated multiplication which occurs in the solution of the

following problem: "If 31416 be the approximate value of the

circumference of a circle whose diameter is 10,000, what is the

numerical value of the circumference of a circle whose diame-

ter is 635?" This solution is said to be the first example
found of this abbreviated multiplication ;

the use of it, how-

ever, became very popular in a short time afterward, being es-

pecially useful in the multiplication of the large numbers which

were made use" of in the construction of the tables of sines, etc.

This seems like a very near approach to the decimal point,

if it is not indeed the introduction of it
;
but De Morgan main-

tains that Napier only used his comma or line as a rest in the

process, and not as "a final and permanent indication, as well

as a way of pointing out where the integers end and the frac-

tions begin." It must be admitted that the use of the separatrix

was merely incidental, and not the practice of Napier ;
but he

seems to be the first to use a mark for this purpose, even in-

cidentally, and there can be no doubt that even this incidental

use had very great influence in leading to the general adoption
of a decimal point.
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De Morgan thinks that Richard Witt, who published a work
four years before Napier, "made a nearer approach to the dec-

imal point" than Napier; yet he says, "I can hardly admit
him to have arrived at the notation of the decimal point

"
Witt,

in a work published in 1613, presents some tables of compound
interest, in which decimal fractions are used. The tables are

constructed for ten millions of pounds, seven figures are cut

off, and the reduction to shillings and pence with a temporary
decimal separatrix, in the form of a vertical line, is introduced
when wanted, as may be seen on page 446.

But though his tables are distinctly stated to contain only
numerators, the denominator of which is always unity followed

by ciphers, and though he had arrived at a complete and

permanent command of the decimal separator, and though he

always multiplies or divides by a power of 10 by changing the

place of the decimal separator, which is a vertical line, yet
De Morgan thinks he gave no "meaning to the quantity
with its separator inserted." He thinks that if Witt had been
"asked what his 123

|

456 was, he would have answered: It

gives 123j-VoV ^ot it is l2Bj%%.^^

Briggs, the author of the common system of logarithms, was
a disciple of Napier, and might have been expected to adopt
Napier's method of writing decimals. We find, however,
that in 1624, instead of using a decimal point he draws a line

under the decimal terms, omitting the denominator; thus,
5 9321. A work by Albert Girard, published in 1629 at

Amsterdam, is remarkable as using the decimal point on a

single occasion. Oughtred, in his CZams, published in 1631,
uses both the vertical and sub-horizontal separatrix, thus

shutting up the numerator in a semi-rectangular outline, as

23|456_for 23.456. William Webster's work, published in

1634, treats of decimals as a thing generally known
;
but does

not make use of the decimal point, using the partition line to

separate integers, and decimals. In 1657 John Wallis pub-
lished a work in which the old notation, 12 345, was used;
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but he subsequently adopted the decimal point in his algebra.
12 3 4 5

In 1643, the notation used in Johnson's arithmetic is £3!2 2 9 1 9,

and 312500, and 34i625, and sometimes 358149411 fifths. Kav-

anagh says that the present notation was, for the first time,

clearly set forth in some editions of Wingate's arithmetic, 1650.

On the Continent the notation used was 121345 or 12[345, even

in works of the highest repute, up to the beginning of the 18th

century.

The following summary presents some of the different

methods of writing decimals which are found among the early
writers on arithmetic, both in England and on the Continent:

34. 1'. 4". %'". &"" 34 1426

34 11426
(1) (2)

34. 1 . 4 .
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but in explauaiioa the fractioa is not thus written, but described

as parts. Thus, 32.81 feet used in the operation is, in the de-

scription of the question or answer, 32 feet 81 parts.

It was some time after this, however, before the decimal

point was fully recognized in all its uses, even in England;
and on the Continent its introduction was even more tardy.

As long as Oughtred was widely used, which was until the

end of the seventeenth century, there must have been a large

school of those who were trained to the notation 231456. The

complete and final victory of the decimal point must be referred

to the first quarter of the eighteenth century. For a more de-

tailed discus.sion of the subject, see the works of De Morgan
and Feacuuk, from which what 1 have given is derived.

It may seem surprising that the decimal fraction should have

been introduced so late in the history of the science; this de-

lay, however, admits of explanation. The earliest division of

the unit was into halves, thirds, etc.; the decimal division

would be reached later, and the fraction based upon it would

be of no special value, and could not be raised to the importance

of a special class, until after the Arabic system of notation was

adopted. Even then its introduction was necessarily tardy.

Simple as they now appear to us, the invention of decimal frac-

tions was too great an efi'ort for one mind, or even one age.

The idea of them and their use dawned gradually upon the

mind; and one mathematician taking up what another had

timidly begun, added an idea or two, until the subject was

at length fully conceived and developed.

The advantages of the decimal notation of fractions are so

obvious that they hardly need to be specified. Many of the

operations upon fractions are thereby greatly simplified, and

others are entirely avoided. The fundamental operations of

addition, subtraction, multiplication and division, are the same as

in integers, and the cases of reduction to lower terms, common

denominator, etc., do not occur at all. The advantages would

have been still greater if the basis of the numeral scale had been

twelve instead of ten, as appears from a previous discussion.



CHAPTER II.

THE TREATMENT OF DECIMALS.

A
DECIMAL FRACTION is a number of the decimal

divisions of a unit : or it is a number of tentiis, hundredths,

etc. Some authors define it as a fraction whose denominator

is ten or some power of ten
;
and others as a fraction whose

denominator is one followed by one or more ciphers. Both

of these definitions are correct, but seem less satisfactory than

the one first pi'esented. They are objectionable on account of

not expressing the kind of fractional unit, but rather indicating

its nature by describing the denominator of the fraction.

A Decimal Fraction may be expressed in two wa3^s—in the

form of a common fraction, or by means of the decimal scale.

When expressed by the scale it is distinguished from the

general meaning of the term decimal fraction by calling it a

Uecimal. A Decimal may thus be defined as a. decimal

fraction expressed by the decimal method of notation. Thus

T%> tVo' ^^^*-' ^''^ decimal fractions, but not decimals; while

.5, .45, etc., are both decimal fractions and decimals. This

distinction is convenient in practice, and is believed to be

strictly logical. It has not been generally adopted, but there

seems to be a growing tendency towards such a distinction.

In popular language, however, we use the term " decimal

fraction" as equivalent to a decimal.

Notation.—The decimal fraction, as expressed by the decimal

scale, has no denominator written, the denominator being

indicated by a point before the numerator. This notation, as

already seen, arises from that of integers, and is merely an

( 455)
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extension of it. Beginning at units' place, by a beautiful

generalization, numbers are regarded as increasing toward the
left and decreasing toward the right, in a ten-fold ratio, the

result of which is a decimal division of the unit, corresponding
to each decimal multiple of it.

In order to distinguish between the. integral and fractional

expression and locate each term properly, a point or separatrix
is used. Various marks have been employed for this purpose,
at different times, but the period is now generally adopted.
The origin of this use of the decimal separatrix is discu.sscd in

the previous chapter. Sir Isaac Newton held that the point
should be placed near the top of the figures, thus, 3-56, to

prevent it from being confounded with the period used as a

mark of punctuation.

Gases.—The cases in decimals, it is evident, must be nearly
the same as in whole numbers. The relation of common
fractions to decimals would, it is natural to suppose, give rise

to one or more new processes. A new method of notation

having been agreed upon for a special class of common
fractions, the inquiry naturally arises,—Can other common
fractions be expressed as decimals, and how? We thus begin
to pass from common fractions to decimals: and, reversino-

tbis process, pass back from decimals to common fractions.

This gives rise to a process known as the Reduction of Fractions,

embracing the two cases of reducing common fractions to deci-

mals, and its converse, decimals to common fractions. The
reduction of common fractions to decimals gives rise to a par-
ticular kind of decimals called circulates, which require an

independent treatment. The other cases of decimals are the

same as in whole numbers.

Method of Treatment.—The method of treating decimals is

quite similar to that of whole numbers. Indeed, they so closelv

resemble integers that many authors have been of the opinion
that 1 hey should be presented with them. It is claimed that

there is but one principle in the exi)re.ssioii of intcgiMs and

i
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decimals, and that the processes and reasoning are the same,
whether the scale is ascending or descending. It is therefore

concluded that the notation of decimals should be presented
with that of integers, and that the fundamental processes of

addition, subtraction, etc., should be applied to them both in

the same connection.

There are, however, valid objections to this seemingly plausi-

ble inference It will be admitted that the mechanical opera-

tions are the same; but the reasoning processes, in at least two

of the fundamental operations, are not identical. The fixing

of the decimal point in multiplication and division, would be

entirely too difficult to be presented along with the fundamental

operations of integers. Besides, it would be illogical to separate

one class of fractions from the general subject of fractions
;
and

moreover, one process, namely the reduction of decimals, could

not be considered until after common fractions had been dis-

cussed. These considerations have been sufficient to prevent

authors of arithmetic from uniting the treatment of decimals

with that of integers, and will, I doubt not, continue to sepa-

rate them.

Numeration.—In the treatment of decimals, the first thing

to be considered is the method of reading and writing them, or

their Numeration and Notation. These processes present sev-

eral points worthy of notice, points which seem to have escaped

the attention of the writers on arithmetic. Having introduced

the subject of decimals by explaining that the first place to the

right of units is tenths, the second place hundredths, etc., it im-

mediately follows that .45 is read "4 tenths and 5 hundredths,"

but it does not immediately follow, as many arithmeticians are

in the habit of assuming, that it is read "45 hundredths." If,

however, it is first explained that y% is written .4, and -^-^-^, .45.

then it does not immediately follow that .45 is read "4 tenths

and 5 hundredths." The usual method of presenting decimals

is to explain that the first place to the right of the decimal point

is tenths, the second place hundredths, .etc.; it should then be

20
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shown that the decimal can be otherwise read. Thus, suppose

we have the decimal .45: this expresses primarily 4 teMhs and

5 hundredths ; and since 4 tenths equals 40 hundredths, and 40

hundredths and 5 hundredths are 45 hundredths, the expression

45 may also be read 45 hundredths. This must be explairiCd

if we desire to preserve the chain of logical thought in our

"roatment.

Prom this it is seen that in practice there are two methods

of reading decimals, which may be expressed as follows:

1. Begin at the decimal point and read in succession the

value of each term belonging to the decimal, or

2. Read the decimal as a whole number, and annex the name

of the right-hand decimal place.

It will be noticed that in reading a large decimal we should

numerate from the decimal point to derive the denominator,

and toward the decimal point to determine the numerator.

Notation.—The writing of decimals, when conceived or read

to us, presents several points of interest. When the decimal is

conceived analytically, that is, as so many tenths, hundredths,

etc., we write it by the following rule :

1. Fix the decimal point and write each term, in its proper
decimal place.

If the decimal is conceived synthetically, that is, as a number

of ten-thousandths, or a number of millionths, etc., we write

it by the following rule :

2. Write the numerator as an integer, and then place the

decimal point so that the right-hand term shall express the de-

nomination of the decimal.

In writing a decimal in which the numerator does not occupy

the required number of decimal places, it is not readiiy seen

where to place the decimal point, and how many ciphers to ))re-

fix. The best practical rule in this case is the following*

3 Write the numerator as an integer, and then begin at

the right and numerate backward, filling vacant places with

ciphers, until we reach the required denomination, and to the

expression thus obtained, prefix the decimal point.
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Thus, to write 475 millionths, we first write 475
;
then be-

ginning at the 5, we numerate toward the left, saying tenths,

hundredth.^, thousandths, ten-thousandths (writing a cipher),

hundred-thousandths (writing a cipher), millionths (writing a

cipher), aud then place the decimal point.

Several other methods have been suggested for writing

decimals, among which is the following, by Prof. Henkle. It

is seen that the tens of any number of tenths, the hundreds of

any number of hundredths, the thousands of any number of

thousandths, etc., each fall in the order of units when the

decimal is expressed. Thus 56 tenths, is 5.6, the 5 tens falling

in units' place ;
2345 hxindredths is 23.45, the 3 hundreds falling

in units'' place, etc. Hence the rule,

1. Begin at the left and write the term corresponding to the

denominator of the decimal in the place of units.

Reduction.—The methods of treating the two cases of reduc-

tion are very simple. In reducing a common fraction to a

decimal fraction, we reduce the different terms of the numerator

to tenths, hundredths, etc., and divide by the denominator. In

reducing a decimal to a common fraction, we express the deci-

mal in the form of a common fraction, and then reduce it to its

lowest terms. '

Fundamental Operations.—Addition and subtraction are

treated exactly as in integers, the same rules applying to

both. The mechanical pi'ocesses of multiplication and division

are the same as in whole numbers
;
the only difference being

the placing of the point in the product and quotient. There

are two methods of explaining the location of the decimal point

in multiplication and division, based upon the different concep-

tions of the origin of the decimal. One locates the point by
the principles of common fractions; the other derives the

method from the pure decimal conception. The latter is the

simpler and more practical method. These two methods are

explained in my works on written arithmetic, and need not be

presented here.
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NATURE OF CIRCULATES.

THE
adoption of the method of expressing fractions by the

decimal scale opened up a new avenue of thought in the

science of numbers. Decimals were treated without writiuir the

denominator, and common fractious were frequently thrown
into the decimal form and operated upon by means of the rules

for whole numbers. The process of changing common fractions

into the decimal scale led to the discovery of an interesting
class of decimals called Circulating Decimals. These new
forms soon attracted the attention and called forth the ingenuity
of mathematicians; and, when investigated, were found to

possess some remarkable and interesting properties.

Origin.—Circulating Decimals have their origin in the

reduction of common fractions to decimals. In making thi.g

reduction, we annex ciphers to the numerator, and divide by
the denominator. This division sometimes terminates with an
exact quotient, and sometimes would continue on without

ending. When it does terminate, the common fraction can be

exactly expressed in a decimal; when it does not terminate, if

the division be carried sufficiently far, a figure or set of figures
will begin to repeat in the same order. Such a decimal is

called a circulating decimal, or simply a Circulate.

It is thus seen that Circulates have their origin, not iu the

nature of number itself, but in the method of notation adopted
to express numbers. They are an outgrowth of the Arabic

system of notation and the decimal scale upon which it is

based. If the scale of this system were duodecimal instead of

(400)
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decimal, the subject of Circulates would be greatly modified.

Thus ^, ^, ^, etc., vvliich now give circulates, would then give

finite decimals; while 4, |, -^^, etc., would give circulating
decimals.

Notation.—The part of the circulate which repeats is called

a Repetend A llepeteud is indicated by placing one or two

periods or dots over it. A repetend of one figure is expressed

by placing a point over the figure which repeats; thus .3

expresses .333, etc. A repetend of more than one figure is

expressed by placing a period over the first and the last figure;

thus, 6.345 expresses 6.345345, etc. Sometimes the first part

of a decimal does not repeat, while the latter part does repeat.

Such a decimal is called a mixed circulate. The part which

repeats is called the repeating part ; the part which does not

repeat is called the non-repeating or Jinite part of the circulate.

Thus 4.536 is a mixed circulate in which 5 is the finite, or

non-repeating part, and 36 the repeating part.

In an expression consisting of a whole number and a

circulate, if the whole number contains terms similar to those

of the repetend, the repetend may be indicated by placing one

of the dots over a term in the whole number. Thus, suppose

we have the circulate 54.234234, etc.
;
this is usually expressed

thus, 54.234; but, since the term just before the decimal point

is the same as the last term of the repetend, it may also be

expressed thus, 54.23. This indicates that 423 repeats ;
and.

expanding the expression, we have 54.23423 etc., which,

expressed in the ordinary way, becomes 54.234. In the same

way, 6.04 denotes 6.046
;

20.12 denotes 20.1220.

The reading of a repetend is a matter which often puzzles

young teachers. Thus, in the case of the repetend .3, since

the denominator is 9, we cannot say "the decimal 3 tenths;"

neither will it answer to say
" the decimal 3 ninths ;" how,

then, shall it be read? The true reading is "the circulate

3 tenths." Calling it a circulate distinguishes it from the

decimal fraction 3 tenths, and also indicates that it is equal to

8 ninths.
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Again, how shall we read .430 ? Ij; is not sufficiently explicit

to say
" the mixed circulate 436 thousandths," or " the mixed

circulftte 4 tenths and 36 thousandths," since neither of these

expresses the idea exactly. The correct reading is, "the mixed
circulate 436 thousandths, whose non-repeating pai't is 3 tenths

and repeating part 36 thousandths." There may be other read-

ings equally correct ; the one suggested is given to lead teachers

to avoid the adoption of those which are erroneous.

Definitions.—A Circulate is a decimal in which one or more

figures repeat in the same order. A Eepetend is the term or

series of terms which repeat. This distinction between a cir-

culate and a repetend should be carefully noted, as it is not

always clearly understood. Circulates are Pure and Mixed;

Repetends are Perfect and Imperfect, Similar and Dissimi-

lar, and Complementary. A Perfect Repetend is one which
contains as many decimal places, less one, as there are units in

the denominator of the equivalent common fraction. Thus, i=
.142857, and yV= -05882352941 17647 are each perfect repe-

tends.

Similar Repetends are those which begin and end respec-

tively at the same decimal places; as .427 and .536. Dissimi-

lar Repetends are those which begin or end at different decimal

places. Especial attention is called to this definition of simi-

lar repetends, as it is a departure from the view usually taken_

Repetends which begin at the same place have usually been re-

garded as similar; and those which end at the same place,

conterminou!i. It is thought, however, to be much more pre-

cise to regard repetends beginning and ending respectively at

the same places as similar. Repetends are surely not quite
similar if they end at different places; to be similar they should

both begin and end at the same place. This view makes it

necessary to employ some other term to indicate a similarity
of beginning. There being no word thus used, the term

cooriginous, expressing a coorigin, is suggested. Its appro-

priateness may be seen by comparing it with conterminous, de-
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noting a cotermination, which has already been adopted to

denote a similarity of endings.

Cases.—Since circulates have their origin in the reduction

of common fractions to decimals, it follows that the first case in

the treatment of circulates is Reduction. The Reduction of

Circulates embraces three distinct cases: 1. The reduction of

common fractions to circulates; 2. The reduction of circulates-

to common fractions; 3. The reduction of dissimilar repetends-

to similar repetends. We have also Addition, Subtraction,

Multiplication, and Division of Circulates. I have also recently

introduced in my Higher Arithmetic the Greatest Common
Divisor and Least Common Multiple of Circulates, subjects

not heretofore treated in any arithmetical work. The comparison
of circulates with common fractions gives rise to a number of

interesting truths, which will be presented under the head of

Principles of Circulates.

Method of Treatment.—The method of reducing commoii

fractions to circulates is the same as that of reducing them to

ordinary decimals. An abbreviation, based upon a principle of

repetends, is sometimes employed. The method of reducing
circulates to common fractions differs considerably from the

method of reducing decimals to common fractions. In the

finite decimal, the denominator understood is 1 with as many
ciphers annexed as there are places in the decimal; in the

circulate the denominator of the repetend is as many 9's as

there are places in the repetend. There are three methods of

explaining this reduction, as will be shown in the treatment.

Circulates can be added, subtracted, multiplied, and divided,

by first reducing them to common fractions
;
or they may be

expanded sufficiently far so that the repeating figures may
appear in the result. Both of these methods are objectionable

on account of their length, and are therefore not usually

employed. In the addition and subtraction of circulates, it i

Detter to reduce them to similar repetends and then perform
the operation. In the multiplication and division of circulates,

a slight modification of this method is employed.



CHAPTER lY.

TREATMENT OF CIRCULATES.

THE
Treatment of Circulates embraces the operations of

Reduction, Addition, Subtraction, Multiplication, Division,

Greatest Common Divisor, Least Common Multiple, etc., and

the Principles of Circulates. Attention will be called to the

treatment of several of these subjects, and a distinct chapter
will be devoted to the Principles of Circulates.

Reduction of Circulates.—The Reduction of Circulates is

conveniently treated under four cases :

1. To reduce common fractions to circulates.

2. To reduce a pure circulate to a common fraction.

3. To reduce a mixed circulate to a common fraction.

4. To reduce dissimilar repetends to similar ones.

1. To reduce common fractions to circulates.—The gen-

eral method of reducing common fractions to circulates is to

annex ciphers to the numerator of the common fraction, and

divide by the denominator, continuing the division until the

figures of the circulate begin to repeat. Thus, to reduce -^ to

a circulate, we annex ciphers to the numerator 5, divide by the

denominator 12, indicate the repeating figure by placing a period

over it
;
and we have the circulate .416.

"When the circulate consists of many figures, the process of

reduction niay be abbreviated by employing some of the prin-

ciples of repetends. Thus, suppose it be required to reduce -^
to a repetend. By actual division to five places, we find

^=0.03448^.
Now ^ is 8 times -^\,

hence multiplying this by 8 we have

^^0.275862%. Substituting this value of -^ in the expression

for the value of
-5^,

and we have

^=0.0344827586^.
(464)

I
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This, multiplied by 6, gives 2%=0.2068965517J9 ; which, sub-

stituted iu the second expression for
^^9, gives

^9
= 0.034482758620689655170^9.

Multiplying by 7, we get 2V=0.24137931034482758620|ft ;

which, substituted in the third expression for ^^, gives

2V=0.0344827586206890551724137931034482758620f|.
As the terras have begun to repeat, it is unnecessary to

continue the process any further. It will be seen, on examina-

tion, that the repeteud consists of 28 figures, or one less than

the denominator of
-J9,

and therefore is a perfect repetend.

2. To I'educe a pure circulate to a common fraction.—•

There are three distinct methods of explaining this case, as has

already been stated. In order to illustrate these methods, we

will solve the problem, Reduce .45 to a common fraction.

In the first method, having proved by actual division that

.i=i .6i=J9, .6oi=-54-9, etc., we derive the denominator of

any circulate from its relation to these given circulates. To

illustrate, reduce the circulate .45 to a common fraction. The

method is as follows: Since .01=-^, as shown by operation.

actual division, .45, which is 45 times .01, equals oi^Jg-
45 times ^, or f|, which, reduced to its lowest

_45=45=^5^^

terms, equals "/^.

By the second method, we multiply the circulate by 1 with

as many ciphers annexed as there are places in the repetend,

which makes a whole number of the repeating part of the

circulate. We then subtract the two circulates, and have a

certain number of times the given circulate equal to the differ-

ence, from which the given circulate is readily found. We will

illustrate by the solution of the same problem.

Let C represent the common fraction

which equals the circulate: we will then ^ icic' *^ ' C= .4545 etc.

have C-.4545 etc.
; multiplying by 100 iooC=45.4545 etc.

to make a whole number of the repeating 990= 45

part, we have 100 times the common c=AA=-i..
fraction equal to 45.4545 etc.

;
subtract-

ing once the common fraction from 100 times the common
30
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fraction, we have 99 times the common fraction equal to

45.4545 etc., minus .4545 etc., which equals 45; hence once

the common fraction equals -^^,
or j\.

By the third method, the repetend is regarded as an infinite

series, the ratio being a fraction whose numerator is 1, and

denominator 1 with as many ciphers annexed as there are

places in the repetend. The solution

is as follows: The repetend Ab may , .

operation.

i)e regarded as an infinite series, j^^-^ •45=y/o^+y^''o-ij+etc.

+ TTrV'(Tfr f etc. The formula for the S=x
"

=_45 ^_9 9

sum of an mlinite series is S= • =4a—_5_
1 r 99 11-

Substituting the value of a^yVo' ^"^^ ^^ri^' ^^^ ^^"^^ ^^tTSiJ

-4-
ja^-'o,

which equals ||, or
-j5_.

3. To reduce a mixed circulate to a common /fraction.
—

There are three distinct methods of reducing mixed circulates

to common fractions, as in the preceding case. To illustrate

these methods we will solve the problem,

Reduce .318 to a common fraction. By operation.

the first method, we reason thus: The •318=^5- of 3.18

mixedcirculate.3i8equalsyLof3.i8, which ^—^I? =.^IX

by the preceding, case equals Jg of 3^, or _ 35 _ 7

J^. of 3yV, which equals ^^, or ^.
-tto-tt-

By the second method, we reason as follows: Let C repre-

sent the common fraction, then we
1 11 1 ri 01010 X 1-1 OPERATION.

shall have C=. 31818 etc.; multiply- p_ 31 SIS etc

ing l)v 10 to make a whole number —^(^n—
—

o"TqTo~T~
i{)(j— o.lolo etc.

of the non-repeating part, we have 1000C=318 1818 etc.

10 times the fraction equals 3.1818 ~990C^=3T5
etc.; multiplying this bv 100 to make fy =.3jl 5.=_v_

a whole number of the repeating part,

we have 1000 times the fraction equals 318.1818 etc.; subtract-

ing 10 times the fraction from 1000 times the fraction, we have

990 times the fraction equals 315, from which we find the

fraction equals |i|, or ^j.
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OPERATION.

.318

In the previous method we see that we subtract

the finite part from the entire circulate, and divide

by as many 9's as there are figures in the repe-

tend, with as many ciphers annexed as there are
'^^^

decimal places before the repetend; hence, by -•-

generalizing this into a rule, we may perform the '^Q^V
operation as in the margin. This is the method preferred in

practice.

This case may also be solved by regarding the repetend as

an infinite series, and finding its operation.
sum by geometrical progression, . .3i8=-3_._(__i8__|___i8_-Lptp

ftiid then adding it to the g=r is, •_ 9 9_— i «°
.

^ ioo¥ -100 yg-cr
finite part. The solution is -3_-i,,i8 =-315— 7^^ 101^990 Tg-o ^.
presented in the margin, in

Avhich it is seen that we regard yif-y as the first term of the

series, and yi-^ as the rate.

4. To reduce dissimilar repetends to similar ones. To solve

this case it is necessary to understand the following principles:
1. Any terminate decimal may be considered interminate,

its repetend being ciphers; thus, .45 — .450, or .45000, etc.

2. A simple repetend may be made compound by repeating
the repeating figure; thus, .3=.33=. 3333, etc.

3. A compound repetend may be enlarged by moving the

right-hand dot towards the right over an exact number of

periods; thus, .245=.24545, etc.

4. Both dots of a repetend may be moved the same number
of places to the right; thus, .5378=.53'i83 or .537837, etc,
for each expression developed will give the same result.

5. Dissimilar repetends may be made cooriginous by mOving
both dots of the repetend to the right until they all begin a,t

the same place.

6. Dissimilar repetends may be made conterminous by mov-

ing the right-hand dots of each repetend over an exact number
of periods of each repetend until they end at the same place.
The method of treating this case may be illustrated by the
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OPERATION.

.45 =.45454545454545

.4362 rr..43623623623623

.813694=.81369436943694

following example : Make .45, .4362, and .813694 similar. The

solution is as follows: To make

these repetends similar, thej must

be made to begin and end at the

same place. To do this, we first

move the left-hand dots so that they

begin at the same place, and then move the right-hand dots

over an exact number of periods, so that they will end at the

same place. Now the number of places in the periods are re-

spectively 2, 3, and 4; hence the number of places in the new

periods must be a common multiple of 2, 3, and 4, which is 12;

we therefore move the right-hand dot so that each repetend

shall contain 12 places.

Divisor and Multiple.—The Greatest Common Divisor of

two or more decimals is the greatest decimal that will exactly

divide them. Such a divisor can be found by reducing the

decimals to common fractions, and applying the method for

common fractions
;
but it can also be found by keeping them in

the decimal form
;
and the latter method is generally less

tedious and more direct. To illustrate the method, let us find

the greatest common divisor of .375 and .423. We make the

two circulates similar, and sub-

tract the finite part, which re-

duces them to fractions having
a common denominator. We
then find the greatest common

divisor of their numerators,

1638, which is the numerator

of the greatest common divisor,

OPERATION.

.3757575
3

,4234234
4

3757572 423423011
3757572

3813264

the denominator being of tho

same denomination as the simi-

lar decimals; hence the greatest

common divisor is a^Wj^aO '
^^

.0001638.

55692
49140

6552
6552

476658
501228

24570
26208

1638

^^i^=.0b01638, G. C. D.
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The method, it is seen, consists in reducing the decimals to

a common denominator, finding the greatest common divisor of

their numerators, writing this over the common denominator,
and reducing the resulting fraction to a decimal.

The Least Common Multiple of two or more decimals is the

least number that will exactly contain each of them. Such a

multiple can be found by reducing the decimals to common
fractions and applying the method for common fractions

;
but

it can also be found by keeping them in their decimal form;
and the latter method is preferred, as being generally more

direct and less laborious.

To illustrate the method, let us find the least common mul-

tiple of .327, 1.011 and .075. We reduce the circulates to frac-

tions having a common

denominator, as in the

previous case. The

least common multiple

of these numerators is 3

275699700, which is 4

the numerator of the 25

least common multiple, 101

the denominator being
the common denomina-

tor of the fractions.

,32727

3

OPERATION.

i.oiiio

10

32724 101100

.07575

07575

10908



CHAPTER V.

PRINCIPLES OF CIRCULATES.

^PHE investigation of the relation of circulate forms to com-

-L mon fractions has led to the discovery of some very inter-

esting and remarkable properties. These will be considered

under the head of Principles of Circulates, and Complemen-

tary Repetends. The subject being rather briefly treated in

the text-books, will be presented here somewhat in detail. A
brief and simple explanation will be given in connection with

each principle.

1. A common fraction whose denominator contains vo other

prime factors than 2 or 5, can he reduced to a simple decimal.

For, since 2 and 5 are factors of 10, if we annex as many ciphers

to the numerator as there are 2's or 5's in the denominator, the

numerator will then be exactly divisible by the denominator.

2. The number of places in the simple decimal to which a

common fraction may be reduced, is equal to the greatest num-

ber of 2's or 5's in the denominator. For, to make the numer-

ator contain the denominator, we must annex a cipher for every

2 or 5 in the denominator, and the number of places in the

quotient, which is the decimal, will equal the number of ciphers

annexed.

3. Every common fraction, in its lowest terms, whose denom-

inator contains other prime factors than 2 or 5, will give an

interminate decimal. For, since 2 and 5 are the only factors

of 10, if the denominator contains other prime factors, the nu-

merator with ciphers annexed will not exactly contain the

denominator; hence the division will not terminate, and the

result will be an interminate decimal.

(470)
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i. EvPT'ij common fraction which does not give a simple
decimal gives a circulate. For, in reducing a common frac-

tion to a decimal, there cannot be more different remainders

than therfe are units in the denominator; hence, if the division

be continued, a remainder must occur which has already been

used, and we shall thus have a series of remainders and divi-

dends like those already used, therefore the terms of the quo-
tient will be repeated

5. The number of figures in a repetend cannot exceed the

number of units in the denominator of the common fraction
which produces it, less 1. For, in reducing a common fraction

to a decimal, when tlie number of decimal places equals the

number of units in the denominator, less 1, all the possible
different remainders will have been used, and hence the divi-

dends, and therefore the quotients which constitute the circu-

late, will begin to repeat. In many cases the remainders

begin to repeat before we have as many as the denominator

less 1.

6. The number of places in a repetend, when the denominator

of the common fraction producing it is a prime, is always equal

Jo the number of units in the denominator, less 1, or to some

factor of this number. For, the repetend must end when it

reaches the point where it has as many places less 1 as there

are units in the denominator of the producing fraction; hence,

if it ends before this, the number of places must be an exact

part of the number of places in the denominator less 1, that it

may terminate when it has as many places as the denominator

less 1. This is not generally true when the denominator is

composite, as in Jy, Jg, ^, Jy, etc.

T. A common fraction whose denominator contains 2'.s- or

S's viith other prime factors, will give a mixed circulate, and

the number of places in the non-repeating part will equal the

greatest number of 2's or 5's in the denominator. Dividing
first by the 2's and 5's, we shall have a decimal numerator

containing as many places as the greatest number of 2's or S'a
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(Prin. 2). If we now divide by the other factors, the dividends

consisting of the terms of the decimal numerator will not give

the same series of remainders as when we have a series of

dividends with ciphers annexed ;
hence the circulate will begin

directly after the last place of these decimal terms. To illustrate,

take Y^! ^^d factor the denominator, and we have

1 = _J .

2x5x5xT
ilividing by the 2 and the 5's we have •^=2.^ in which it is evident

the circulate must begin in the third decimal place, just as the

circulate from ^ begins in the first decimal place.

8. When the reciprocal of a prime number gives a perfect

repetend, the remainder which occurs at the close of the period

is 1. For, since the reduction of the fraction to a circulate

commenced with a dividend of 1 with one or more ciphers

annexed, that the quotients may repeat we must begin with

the same dividend, and therefore the remainder at the close of

the period must be 1.

9. When the reciprocal of any prime number is reduced to

a repetend, the remainder which occurs when the number of
decimal places is one less than the prime, is 1. For, since the

number of decimal places in the period equals the denominator

less 1, or is a factor of the denominator less 1, at the close of a

period consisting of as many places as the denominator less 1,

there will be an exact number of repeating periods, and therefore

the remainder will be 1.

10. A number consisting of as many 9's as there are units

in any prime less 1, is divisible by that prime. For, if we

divide 1 with ciphers annexed by a prime, after a number of

places 1 less than the prime, the remainder is 1; hence 1 with

the same number of ciphers annexed, minus 1, would be exactly

divisible by the prime; but this remainder will be a series of

O's, therefore such a series of 9's is divisible by the prime.

Thus 999999 is divisible by T.

11. ^ number consisting of as many Vs as there are units
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tn any prime {except 3), less 1, is divisible hy that privie.

For the prime is a divisor of a series of 9's (Prin. 10), which

is equal to 9 times a series of I's; and since 9 and the prime
are relatively prime, and the prime is a divisor of 9 times a

series of I's, it must be a divisor also of a series of I's. Thus

nun is divisible by 7; also nnnim is divisible by n.

12. A number consisting of any digit used as many times

as there are units in a prime {except 3), less 1, is divisible by
that prime. For, since such a series of I's is divisible by the

prime, any number of times such a series of I's will be divisible

by the prime. Hence 222222, 333333, 444444, etc., are each

divisible by 7.

13. The same perfect repetend will express the value of all

proper fractions having the same prime denominator, by

starting at different places. Thus, J-=.14285714285 etc. But

|=.lf, hence the part that follows 1 in the repetend of
4-

is the

repetend off; that is, |-=.42857i. Again, i--.14f ;
hence the

part that follows .14 in the repetend of \ is the repetend of |;

that is, 1^=. 285714. In a similar manner we find f-=.857142,

|-=.571428; and the same thing is generally true.
.

14. In reducing the reciprocal of a prime to a decimal, if

we obtain a remainder 1 less than the prime, we have one-

half of the repetend, a.nd the remaining half can be found by

subtracting the terms of thefirst half respectively from 9. Ti!k(!

\, and let us suppose in decimating we have reached a remain-

der of 6
;
now what follows will be the repetend of f, and tlie

repetend of | added to the repetend of \ must equal 1, since

f--l-^=l; hence the sum of these two repetends must equal
.999999 etc., since .999999 etc. equals 1. Now in adding the

terms of these two repetends together, that the sura may be a

Series of 9's, there must be just as many places before the point
where 6 occurred as a remainder, as after; hence 6 occurred as

a remainder when we were half through the series.

Again, since the sum of the terms of the latter and the for-

mer half of the repetend equals a series of 9's, each term of
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the first half of the repeteiid, subtracted from 9, will give the

corresponding term of the latter half of the series.

All perfect repetends possess this property, and a large nura-

her of those which are not perfect. Repetends possessing this

property are called complementary repelenda. The last two

properties are of great practical value in reducing common
fractions to repetends.

15. Any prime is an exact diviaor of 10 raised to a power
denoted by the number of terms in the repetend of the prime,
less 1 ; or of 10 raised toa power denoted by any multiple of the

number of terms, less 1. For, by Prin. 6, the number of places
in the repetend must equal the number of units in the prime, or

some factor of that number
;
hence the dividend used in ob-

taining a period must be 10 raised to a power equal to the

number of terms in the period ;
and since the remainder at the

end of the period is 1, the prime will exactly divide 10 raised

to a power equal to the number of terms in the period, less 1.

Both this and principle 6 depend on Fermafs Theorem, that

app-i — j^ jg (divisible by p when p and P are prime to each

other." For 10, the base of the decimal system, is prime to

any prime number except 2 and 5; hence 10^"^ —1 is always

exactly divisible by p, when p is any prime except 2 and 5.

It thus follows that in the division of 1 with ciphers annexed,
the remainder is always 1 when the number of places in the

quotient is equal to the number of units in the prime. From
this we can readily derive the second part of principle 6, and

also principle 15.

16. Any prime is an exact divisor of a number when it will

divide the sum of the numbers formed by taking groups of
the number consisting of as many terms as there are figures in

the repetend of the recijjrocal of that prime. We will show

this for a prime whose reciprocal gives a repetend of three

places. The number 47,685,672,856, may be put in the form

856+ 672x103 + 685xl0s + 47xl09, or 672x (lO^
—

1) + 685

x(106_l)+ 47x(10«— l) + 856+ 672+ 685 + 47; 'but these
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different powers of 10, diminished by 1, are all divisible by any
number whose reciprocal gives a number of three places, as 31

;

hence if the sum of the groups, 47+ 6854-G72+ 85G, is divisible

by 87, the entire number is also divisible by 37. The same

may be illustrated with any other number, and the principle is

fiierefore general. The principle admits, also, of a general
demonstratiou.

From this general proposition we derive the following special

principles embraced under it:

1. Since the reciprocals of 3 and 9 give a repetend of one

plac€, they will divide a number when they divide the sum of

the digits.

2. Since the reciprocals of 11, 33, and 99, give a repetend of

two places, they will divide a number when they divide the

sum of the numbers found by taking groups of two places.

3. Since the reciprocals of 27, 37, and 111, give repetends of

three places, they will divide a number when they divide the

sum of the numbers formed by taking gi'oups of three places.

4. Since the reciprocal of 101 gives a repetend of four places,

it will divide a number when it divides the sum of the numbers

formed by taking groups of four places.

5. Since the reciprocals of 41 and 271 give repetends of five

places, they will divide a number when they divide the sum
of the numbers formed by taking groups of five places.

•

6. Since the reciprocals of 7, 13, 21, and 39 give repetends

of six places, they will divide a number when they divide the

sum of the numbers formed by taking groups of six places.
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CHAPTER VI.

COMPLEMENTARY REPETENDS.

COMPLEMENTARY
REPETENDS are those in wliieli tl

terms of the first half of the period are respectively i'(|n

to 9 minus the corresponding terms of the second half of il

period. Thus, in the repetend arising from i which is . 142 v'l ;.

the first term, 1, subtracted from 9, leaves the fourth term, S;

the second term 4, subtracted from 9, leaves the fifth term. o.

etc. Complementary Repetends include all perfect repeteiids.

and many repetends that are not perfect. From the principlrs

presented in the preceding chapter, the following curious prop-

erties of complementary repetends will be readily understood :

1. // the last half of the terms of a perfect repetend

be written in order under the first half and

added to the terms in the first half, the sum rt^o.^QOpno'/;

Will he a succession of 9's. Thus, the traction 95652173913

^i3-=.6434782608695652IT3913; and this repe- 99999999999
tend, written and added as suggested, will give

a series of 9's, as is seen in the margin.

2. If the remainders obtained in reducing the common frac-
tion to a repetend be written in the same way and added, eac}

sum will be the denominator of the common fraction. Thus,

the remainders in reducing 3^ are

10, 8, 11, 18, 19, 6," 14, 2, 20, 16, 22,

13, 15, 12, 5, 4, 17, 9, 21, 3, 7, 1, which, added,

give 23, 23, 23, 23, 23, 23, 23,~23r237l3,~23.
3. If we subtract the unit term of the denominator of the

common fraction from 10, and multiply any term of the repe-

(476 J
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tend by the remainder, the unit term of the product will be the

unit term of the corresponding remainder. Thus, in ^,
.0, 4, 3, 4, 7, 8, 2, etc., are the terms of the repetend.

10- 3 = 7

0, 8, 1, 8, 9, 6, 4, etc., unit terms of products and

remainders.

4. A complementary repetend, by beginning at different

points, will be the repetend of all proper fractions having the

same denominator as the fraction which produced it. Thus,

^3=.643478208 etc.
;
and ||=. 43478 etc., which begins with

the second figure of the circulate of
-J-g-. Again, -2%=.34782

etc., which begins with the third figure of the circulate equal to

T> w GDC

5. The numerator of the fraction equal to any one of the

several repetends beginning with the successive figures of a

complementary repetend, is the remainder left when the pre-

ceding figure of the repetend was obtained. Thus, in the cir-

culate of 2^' when the first 4 of the circulate was obtained,

8 was the remainder, and 8 is the numerator of the fraction

equal to the circulate. 34782 etc.

The following are all the perfect repetends whose denomina-

tors are less than 100:

|=.i42857

iV=.6588235294117647

iV^.05263157894736842i

jV -.0434782608695652173913

5V=.634482758620689655172413793i

5V=.6212765957446808510638297872340425531914893617
.016949152542372881355932203389830508474576271186

4406779661

{•

.010309278350515463917525773195876288659793814432

989690721649484536082474220804123711340206185567

1 ^ J .016393442622950819672131147540983606557377049180^ ^
327868852459

gr 1
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The following repetends are complementary, as may be
seen by the test for complementary repetends, but are not

perfect :

tV=.676923

ySr=-013()9863

Jg-=.6ll235956056n9n52808 -{^^".^ ^
(renod.

_i_=6099

yi^= 00970873786407766 !S'^^-^^
(Period.

The following common fractions give an even number of

figures in a period, but the repetends are not complementary,
as will be seen by applying the test for complementary
repetends :

24-=.047619

^V=.63
JL.= 62564i

J^=.0204081 etc., to 42 places.

^=.0196078431372549.

The following are not complementary repetends, but the

number of places in each repetend is an exact part of the

number of units less one in the denominator of the common
fraction producing it:

^j-=.632258064516129

-^=.02439

^^=.023255813953488372093

-gig-=.6l88679245283

^7= 014925343134328358208955223880597

^=01408450704225352112676056338028169

^9=0126582278481

gL^.O 12048192771084337349397590361 44578313253

J ^ (.60934579439252336448598130841121495327102803738
^"^

1317757

Professor Perkins has ingeniously illustrated some of the

properties of repetends, by arranging the terms of a repetend
and the corresponding remainders which arise in obtaining

them, in concentric circles.
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I

I

The following illustrntiori and d'scussion I have taken from

his work on Higher Arithmetic published in 1844:

In this figure, the inner circle of figures, commencing at the

0, directly under the asterisk, and counting towards the right

hand, is the circulating period of
2 9-

The outer circle of figures, commencing at the same place
and counting in the same direction, are the successive remain-

ders which will occur in the operation of decimating -Jg.

In this circle of remainders, all the numbers from I to 28,

inclusive, occur, but not in numerical order.

From what has been previously explained, we infer the fol-

lowing properties, which are common to all perfect repetends :

1. The sum of any two diametrically ojjjyosite terms of the

circle of decimals will he 9.

2. The sum of any two diametrically opposite terms in the

circle of remainders will equal the denominator 29.

3. If we subtract the right-hand term of the denominator

from 10, and multiply the remainder by any decimal term of
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.the inner circle, the right-hand figure of the product will he

the same as the right-hand figure of the corresponding re-

mainder of the outer circle.

4. Commencing the circle of decimals at any point and

counting completely round, we shall have the perfect repetend

of the common fraction whose denominator is the same as in

the first case, but whose numerator is the remainder in the

outer circle standing one place to the left.

5. If we divide the product of any two remainders by 29,

what remains will be the remainder in the outer circle, corre-

sponding with the place denoted by the sum of the places of the

two numbers.

From the fourth property it follows that this same circle of

decimals expresses the decimal value of all proper common frac-

tions whose denominators are 29.

A similar figure, formed from the perfect repetend of the

common fraction ^V possesses properties the same as those just

explained. Similar circles may be formed for all perfect repe-

tends.

If we arrange the complementary repetend arising from the

fraction ^ir ^^ ^^^ form of a circle, as was done for perfect

repetends, it will be seen that a complementary repetend

possesses all the properties ascribed to the perfect repetend on

pages 419 and 480, except the fourth.



CHAPTER YII.

A NEW CIRCULATE FORM.

IN
The Normal Written Arithmetic, I presented two or three

curious circulate forms which have given rise to so much
discussion among teachers, that it is thought well to call at-

tention to them in this work. These forms are .0| and .6^0^,
both of which are intended to represent pure circulates. Sim-

ilar forms may also occur in mixed circulates, as .Oio4 and

.O^O^O^. Two questions have been raised with regard to

these expressions: first, what do they mean? and second, are

they legitimate arithmetical expressions ? I propose to say a

few words on their meaning, their origin, and their value.

Before discussing this circulate form, attention is called to

the signification of the decimal expression .2^-. In this expres-

sion, does the ^ express tenths or hundredths? Is ^ regarded
as occupying one of the places in the decimal scale, or is it a

part of the tenth ? It has been held that the ^ occupies huu-

dredths place ;
but a very slight consideration is sufficient to lead

one to see that the ^ is one-half of a tenth, and not one-half of

a hundredth. In integers and fractions, the fraction always
denotes a part of a unit of the term to the right of which it

stands. Thus, in 2^, the 2 expresses units, and the ^ is ^ of a

unit. Now, if we divide 2^ by 10, we have .2^; in which the

.2 expresses tenths, and by the principle, as before, the ^ would

be ^ of a tenth. Conversely, if we take the expression .2^ and

multiply it by 10, we have .2^x10=2^, and not 2 units and

|-
of a tenth. The same result will be reached if, regarding

the ^ as ^ of a tenth, we reduce it to 5 hundredths, in wliich

31 (481)
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case the expression becomes. 25; for multiplying this by 10, we

have .25 X 10=2.5, or 2|. Now, if the above is true for .2|, it

is equally true for .1^ or .0^; from which we see that in the ex-

pression .0^, the ^ belongs to tenths place, and should not be

regarded as occupying hundredths place.

These expressions may actually arise in an investigation.

Suppose we are required to subtract $12.62 from $25.62^; the

difference is evidently $13.00^; also 3.4 subtracted from 6.4^

equals 3.0^. In the former case it is clear that the -^
is a half

of a hundredth
;
in the latter, a half of a tenth. It hardly seems

necessary, after this, to say that 3.^ does nut express 3 and ^

of a tenth, as some have supposed ;
and also that the expres-

sion is an illegitimate one, without any other meaning than

35.00. Let us now consider the forms mentioned above.

Origin.—These circulate forms originated from an extension,

of a mixed integer to a mixed decimal, and then a further ex-

tension of the decimal to a circulate. They may, however, bo

immediately derived from the reduction of a common fraction

to a decimal. To illustrate, reduce Jg- to a decimal. Follow-

ing the ordinary rule, w^e annex zeros to operation.

the numerator and divide by the denom- 18)1.00(.0^0^, etc.,

inator: 18 is contained in 10 tenths i of 9 or .0^

a tenth time, with 1 tenth or 10 hun- 10

dredths as a remainder; 18 is contamed L

in 10 hundredths -I
of a hundredth time,

^

with 1 hundredth remaining, etc. Here we observe that the re

mainders repeat ;
hence the quotient figures will repeat, and

Jj may be regarded as equal to .OiOiO^ etc., or .0^.

Again, let us reduce 2^ to a circulate.

Annex zeros to the numerator and divide by
operation.

the denominator: 297 is contained in 160 297)16.00(.0i0^

tenths ^ of a tenth time, with 115 hundredths

as a remainder
;
297 is contained in 115 hun-

dredths ^ of a hundredth time, with 16 hun-

dredths as a remainder. The remainders
16
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begin to repeat; lience the quotient figures will repeat and we
have ^y^=.6ioi

Again, reduce
y|-g-

to a circulate. We
divide the numerator by the denominator: operation.

180 is contained in 70 tenths ^ of a tenth 180)7. 00(.Oio|

time, with a remainder of 10 tenths or 100

hundredths; 180 is contained in 100 hun-

dredths ^ of a hundredth time, with a re-

mainder of 10 hundredths. Here we observe

that the last remainder is the same as the preceding; hence we
conclude that ^ will repeat, and we have t|-o=~-0 30^-

Meaning.—Now what does .Oi signify? First, it is said

since
-^

of a tenth equals 5 hundredths, that 5 is the repetend,
and that the repeating term first appears in the order of hun-

dredths
; or, in other words, that .Oj is the same as the mixed

circulate .05. This view is founded on a wrong conception of

the relation of a fraction to the term on the left of it, as may
be seen from what has already been explained, and also shows
a wrong conception of a repetend. A repetend is simply the

term or terms which repeat, and does not concern itself with

their place or order value. Thus the expression .3 does not

mean that 3 tenths repeats, but simply that the term 3 repeats;

hence .0^ does not mean that ^ of a tenth, or 5 hundredths re-

peats, but simply the expression 0^. It is true that .o|- equals

.05
;
but it does not mean precisely the same thing, neither is

anything gained in general by reducing it to that form. This

will appear in some of the subsequent expressions.

Second, it has been said that the expression .oi represents

an absurdity. This cannot be, unless the fraction occurring in

a decimal place, with no repeating part, is also absurd. It will

be admitted that .2^ is a legitimate decimal expression ; and,

if this is so, then it is conceivable that such an expression may
be repeated. This conception certainly involves nothing ab-

surd
;
and hence the expression of this idea, or .2^2|2|- etc.,

seems to be entirely legitimate. This gives rise to the expres-
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sion .2^; and if the form .2^ is legitimate, so also is .0|. The

expression .O^O^O^ etc., is a legitimate conception ;
and hence

the abbreviated expression of it, .0^, cannot represent an ab-

surdity.

But, admitting the correctness of the conception, does one point

express the idea that the entire expression .0^ repeats? It is

clear that it will not do to use two dots, since that would in-

dicate that there were two orders of the decimal scale occupied,

which cannot be unless such expressions as 2^, 4^, are regarded

as occupying tens and units place, which no one would claim.

It may be asked, however, whether the point should be placed

over the or the ^; thus, .0^ or .0^, and this it is difficult to

decide. Both characters occupy tenths place, so that it would

seem to indicate the same thing when placed over' either char-

acter. There is one consideration which inclines one to place

the point over the fraction If we place it over the 0, it might

be understood that the repeats and not the ^; but if placed

over the ^, it must indicate the repetition of both, since the |

cannot be repeated without using the in order to locate it.

To prevent ambiguity, it would probably be better to place it

over both, or rather partly between them; thus, .0^. In the

case of expressions occupying more than one place, the mean-

ing will be apparent if the point is placed over the beginning

and end of the expression ; thus, .0|^0^.

Value.—These forms can be readily reduced to common

fractions, and their value thus expressed.

A few examples will illustrate the method. operation.
• Let F:= 0-0- etc

Thus, reduce .0^ to a common fraction.
iQp_loi"^etc

'

Let F represent the fraction equal to .0^. ^_2
Multiplying the equation by 10, we have ""f

10F=^ of a unit and the circulate .0^. ^=q=ti^*

Subtracting the first equation from the

1

second, we have 9F=^, whence F=|, or^.
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Again, reduce .6^0^ to a common fraction. Let F represent
the fraction equal to .010^. Multiply-

i OPERATION.
ing by 100, we have lOOF equal to ^
of a ten, i of a unit, and the circulate

.oOFZ^^ofofol elc]

.0^0^; subtracting the first equation —^w^ ^r^
—^^^-

from the second, we have 99F equal ~q1ql
to

|-
of a ten and ^ of a unit, whence '^^"oq^

^ i—iwi
F equals |-

of a ten and ^ of a unit = ^ '^
.

divided by 99; multiplying both nu-

merator and denominator by 6, we have -^^, since 6 times ^
of a unit equals 2 units, and 6 times ^ of a ten equals 3 tens.

Again, reduce -OiO^Oi to a common fraction. Let F^^.O^O^O^.

Multiplying by 10, we have
OPERATION.

F=.0i6m
lOF equal to | of a unit, and

.0^01; multiplying again by inT?_nxnini
100

,
we have lOOOF equal to ly^-v^a^s"?

.

1 of a hundred, ^ of a ten, J
1000F^-OiO|OfO|0|

of a unit, and the circulate 990F=0i0i0f-0i=0i03^V
0103. 1

OAOi: subtracting lOF from F '^ ^o ^ 3^ J-5_9i

lOOOF, we have i of a hun- ^90

dred, | of a ten, | of a unit, minus | of a unit, or reducing the

^ of a ten to units, and subtracting the ^ of a unit, we have

990F equal to I of a hundred and 3^ units
;
whence F=

01Q3 1

\qI^ ; multiplying both terms of the fraction by 30, we have

2V7V0 '
since 30 times 3^ equals 91, and 30 tinaes | of a hun

dred equals 15 hundred.

These forms are more curious than practical, and were pre-

sented at first merely as puzzles. The discussion here given

grew out of the fact that their correctness has been questioned.
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CHAPTER I.

NATURE OF DENOMINATE NUMBERS.

THE
numerical idea is practically the product of two factors

—Mind and Matter. We begin by numbering objects, or

with concrete numbers; we then withdraw the numerical idea

from these objects, and obtain pure or abstract numbers. The
child's first numbers are invariably concrete; from these it

passes to number in the abstract. Subsequently, in the effort

to apply the numerical idea to quantities not existing in indi-

vidual forms, there arises a third class of numbers called De-

nominate Numbers. The nature of these numbers, which

seems not to have been very clearly apprehended by arithmeti-

cians, will be discussed somewhat in detail.

Nature, regarded as how many and how much, gives rise to

two kinds of quantity—quantity of magnitude and quantity of

multitude, called also discrete and continuous quantity. These

two classes of quantity are entirely distinct, as may be seen b^

the manner in which they are primarily estimated. Discrete

quantity is immediately estimated as how many; continuous

quantity is primarily estimated as how much. Thus, we say

how many apples, how many trees, how many birds, etc., not how
much apples, how much trees, how much birds, etc. On the other

hand, we say how much money, how much land, how much time,

how much do you weigh, etc.; not how many money, how many
land, etc. When, however, we fix upon some unit of measure,

these latter quantities can also be expressed numerically ; thus,

we may sa,v how many dollars, how many acres, how many pounds
do you weigh, etc. In this manner, quantity of magnitude, the

21*
( 489 )
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how much, becomes definitely apprehended as the how many.
We fix upoa a unit of measure, and estimate continuous quantity

by comparing it with this unit as a standard. This comparison
leads to a numerical apprehension of the quantity considered;
we speak of it as so many of the unit of measure. Quantity
of magnitude is thus estimated as quantity of multitude

;
the

how much is reduced to and regarded as the how many. In
this manner arises a distinct class of numbers called Denomi-
nate Numbers.

A Deno'ininate Number is thus seen to be a numerical

expression of quantity of magnitude. Quantity of multitude

exists primarily as units; in quantity of magnitude we fix

upon some particular portion of the quantity as a unit of

measure, and estimate the quantity by the number of times it

contains this unit. From this conception of the origin and

nature of a denominate number, we are prepared to give a

scientific definition of it.

Definition.—A Denominate Number is a numerical expres-
sion of quantity of magnitude ; or, A Denominate Number is a

numerical expression of continuous quantity; or, A Denom-
inate Number is a number of units of quantity of magnitude ;

or, A Denominate Number is a number in which the unit is a

measure of a quantity of magnitude; or, A Denominate Num-
ber is a number in which the unit is a measure. In using the

last definition, we would of course attach a special meaning to

the term measure. It may also be remarked that in each defi-

nition the expression continuous quantity may be substituted

for quantity of magnitude.
The quantities thus considered are Time, Weight, Value,

Length, etc., which are called quantities of magnitude. The
term magnitude, meaning literally size, extent, was primarily

applied to quantities occupying space; that is, to something

possessing length, breadth, and thickness. In this primary
sense it does not include weight, value, and time, since these

have no size or extent—no length, breadth, or thickness. The
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signification of the term, however, has become gradually en-

larged, until it now includes every kind of continuous quantity.
It was used in this sense, I think, as early as the time of

Euclid.

Unit of Measure.—Quantity of magnitude is numerically

expressed, as already stated, by comparing it with some
fixed quantity of the same species used as a standard of com-

parison. This standard of comparison is called the Unit of
Measure. The Unit of Measure is a definite portion of the

particular kind of quantity considered. Thus, in weight we
take some definite weight as the unit, and estimate the entire

weight in numbers by its relation to the unit. The same is

done in time, value, length, etc. The unit of measure thus

becomes the basis of all these quantities, the quantities them-

selves being definitely conceived only as we have a definite

idea of the unit.

The units of measure by which these quantities are estimated

do not exist in nature
; they are agreed upon by mankind, and

are therefore artificial. They constitute a distinct class of

concrete units, and give rise to a distinct class of Concrete

Numbers. It is thus seen that there are two classes of concrete

numbers,—one in which the unit is natural, and another in

which it is artificial. Thus in 4 trees, the unit tree is found

in nature, and is therefore a natural unit; in i: pounds, the unit

pound is not found in nature, but is fixed by man, and is there-

fore artificial. This consideration leads us to another definition

of denominate numbers; thus,—A Denominate Number is a

concrete number in which the unit is artificial.

The terms natural and artificial, as here used, refer to the

quantities regarded as units and not merely as objects. Thus,

in the number 4 knives, the knife, as an object, is not found in

nature
;

it is a work of art and therefore artificial. But though

artificial as an object, as a unit of measure it is natural. It is,

therefore, entirely correct to speak of artificial and natural

units, and consequently to define a denominate number as a



492 THE PHILOSOPHY OF ARITHMETIC,

number of artificial units. The definition previously given,

however, is regarded as better.

Quantities.—The quantities of magnitude, or continuous

quantities, which give rise to denominate numbers, are of sev-

eral different kinds. A scientific classification of these quanti-

ties is as follows; 1. Value; 2. Weight; 3. Space; 4. Time.

The term extension is more frequently used than space; we

generally speak of measures of extension rather than measures

of space. Space includes several distinct forms of extension;

length, surface, volume, etc.; and hence a popular classification,

and one a little more convenient in practice, is the followiug:

1. Value; 2. Weight; 3. Length; 4. Surface; 5. Volume; 6.

Capacity; 7. Angles; 8. Time.

The unscientific manner in which the subject of denominate

numbers has been presented, has led to many incorrect ideas

concerning them. Some writers have considered them under

the head of "Weights and Measures;" seeming not to know

that the measure of the force of gravity is just as much a

measure as the measure of length. One writer says they may
be divided into three general classes— Currency, Measure and

Weight— seeming not to understand that currency is a measure

of value, and weight a measure of gravity. It is hoped that

the views here presented will lead arithmeticians and teachers

to a more correct and philosophical view of this subject.

It is a peculiarity of these numbers that they have both an

abstract and a concrete signification. The denominate numbers

refer to time, weight, value, etc : these things are not tangible,

material things. Time is nothing that you can touch or see,

and the same is true of value and weight. Length, surface, and

volume are the abstract quantities of geometry. Concrete

things possess value and weight; but the value and weight are

no more concrete than are the length, surface, or volume.

Denominate numbers are therefore not concrete, in the sense

that the units are material things. They are concrete, how-

ever, in the sense that the number is associated with some par-
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ticular unit. The word concrete, from con, with, and cresco,

I grow, means literally growing or united together, A num-

ber is properly concrete when it is associated with something

numbered, even though the thing itself may be abstract in its

nature. It is not the character of that which is numbered, but

the fact of the association of a number with it, that makes the

number concrete. Thus, the number ybur used independently
of any object is abstract, but if associated with some object, as

boy, yard, pound, etc., we have the concrete numbers 4 boys,

4: yards, etc.

The Standard Units.—The Units of Measure are of as many
distinct classes as there are distinct kinds of continuous quantity
to be measured. There are logically four different kinds of

such quantity, and consequently there are four distinct classes

of units of measure. These units, originating by chance, were

indefinite and variable, and, in time, were found unsuited to the

purposes of a civilized people. Science then took the matter in

hand and began to establish standard units, having definite

values derived from some invariable element of nature by
which we would be able to reconstruct the measures at any time

if destroyed. These standard units were so related to each

other that, having fixed one of them, all the others could be

derived from it. The fundamental unit agreed upon was that

of length. To obtain a standard unit of length was now the

question. The French endeavored to fix it by ascertaining the

distance from the equator to the poles, and taking a definite

part of this distance.

This was done by Delambre and Mechain, who measured an

arc of the meridian between Dunkirk and Barcelona, and gave
the standard unit of length, called the Meter. The English
fixed their standard unit of length by finding the length of a

pendulum which vibrates seconds. The latter method is

regarded as the most convenient in practice, though it is

criticised by the French as being dependent on two elements

foreign to length,
—that is, gravity and time. From the unit
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of length, however obtained, all the other units, except that of

time, may be derived. It will be noticed that, in the English
method, time is made the basis of the system.
The Standard Unit of Time is the Day. This is determined

by the revolution of the earth upon its axis.

The Standard Unit of Value, in the United States, is the

Dollar. It is determined by the weight of the metal used for

money. In English Money the standard is the Pound, deter-

mined in a similar manner.

The Standard Unit of Weight is the Troy Pound. It is

determined by taking a certain number of cubic inches of

distilled water at a given temperature, the barometer being at

a certain altitude. The Avoirdupois pound is derived from the

Troy pound, by taking 7,000 Troy grains. The Apothecaries'

pound is the same as the Troy pound.
The Standard Unit of Length is the Yard. It is determined

by the length of a pendulum which vibrates seconds in a vacuum
at the level of the sea, in the latitude of London. Such a pen.-

dulum is divided into 391,393 equal parts and 360,000 of these

parts taken for the yard.

The Standard Unit of Surface is the Square Yard for

ordinary measurement, and the Acre for land. The standard

unit of Volume is the Cubic Yard for ordinary measurement,
and the Gord for wood. These are derived from the unit of

length.

The Standard Unit of Capacity is the Gallon for fluids, and

the Bushel for dry substances. These are also determined

from the unit of length, each measure consisting of a certain

number of cubic inches.

The Standard Unit of Angular Measure is the Right Angle,

or, in practice, one degree of a circle.

These standard units, as stated above, are so related to each

other that, having determined one, all the others mav be de-

rived from it. Time is the basis of the English svstem. We
first find the Unit of Time from the revolution of the heavenly
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bodies, and dividing it sufficiently far we obtain the second.

Having the second, we can obtain the unit of length by ascer-

taining the length of a seconds pendulum and taking a detiuite

part of it. Having the unit of length, we readily obtain the units

of area, volume, and capacity. The standard unit of weight is

obtained by taking a number of cubic inches of water. The

unit of value is a weight of gold or silver, and can thus be

traced back to its origin in Time.

Scales.—These standard units are divided into smaller units,

each receiving a name and being used as a unit of measure, and

these are again subdivided in a similar manner. Multijjles of

the standard units are also used as new measures, multiples of

these in the same way, the series being continued as far as

convenient. This gives a series of measures for the estimation

of the same kind of quantity, forming a scale of numbers.

Any number expressed in two or more terms of such a scale,

constitutes what is called a Compound Number. A Compound
Number, therefore, consists of several denominate numbers of

the same kind of quantity.

Since the different standards of comparison, their multiplica-

tion and division, originated at different times and under dif-

ferent circumstances, it is natural that these scales should be

irregular and without system. Sometimes the scale of increase

is by twos, fours, etc.; sometimes hj fours, twelves, etc
;
and

again by 12, 3, 5^, etc. This irregularity will be most clearly

seen by comparing any scale of compound numbers with the

decimal scale. Take, for instance, the scale of English Money
and write it beside the decimal scale; thus,

T. h. t. u. £ s. d. qr.1111 1111.
In the decimal scale the second unit is ten times the first, the

third is ten times the second, etc. In the scale of English

Money, the second unit is four times the first, the third is

twelve times the second, the fourth is twenty times the third.

The same irregularity obtains among all the other scales of

denominate numbers.
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This irregularity of scale is a serious defect of our measures
of value, weight, etc., viewed from either a scientific or a practi-

cal standpoint. Science dictates that the multiples and divi-

sions of the standard units should be uniform and correspond
to the scale of notation, which with us would make the scales

decimal. This would enable us to add, subtract, multiply, and

divide compound numbers just as we do abstract numbers.

France has adopted this method in all its measures, and the

United States in its currency. This method has many very

important advantages; the only objection to it arises from the

decimal base of our system of notation, since the simple frac-

tional parts, thirds, fourths, and sixths, are not aliquot parts

of ten. With a system of notation whose base was twelve, the

method would be much more convenient in practice.



CHAPTER [I.

MEASURES OF EXTENSION.

THE
Measures of Extension are of three kinds, measures of

Length, of Surface, and of Volume or Capacity. This

division arises from the fact that extension possesses but three

elements; length, breadth, and thickness To these, however,
must be added Angular or Circular Measure, which is the degree
of divergence of two lines, or the length of an arc of a circum-

ference used to indicate this divergence.

The standard units of this measure were originallv derived

from the natural objects of the material world. In their origin

they followed the general law of mental and scientific develop-

ment—from the concrete to the abstract Thus originated the

foot, the cubit, the span, the fathom, the barleycorn, the hair-

breadth, and other measures taken from parts of the human

body, or from natural objects which possess a certain mean

value sufficiently definite to answer the purposes of a rude so-

ciety. The same is true for all the other measures in denomi-

aate numbers. Among the measures of weight we have the

grain, originally a grain of wheat; the pennyweight, which

was the wei^it of the English penny, etc. For measures of

value some nations use cattle; olhevs, pigs ; the Icelanders,

dried fish; the American Indians, the skins of animals. The

first measures of time were derived from the revolutions of the

heavenly bodies: thus month, derived from moon-eth, was orig-

inally the time measured by the revolution of the moon. The

subject being interesting and instructive, will be treated some-

what in detail The principal authorities followed are Spencer

and the popular encyclopedias.
32
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Nearly all of the original measures of length were taken from

the parts of the human body. The Hebrew cubit was the

length of the forearm from the elbow to the end of the middle

finger ;
the smaller Scriptural dimensions are expressed in hand-

breadths and spans. The EgN^ptian cubit, which was similarly

derived, was divided into digits which were finger-breadths ;

and each finger-breadth was regarded as equal to four grains of

barley placed breadth-wise. Other ancient measures were the

orgyia, or stretch of the arms, the pace, the palm, etc. So

general and persistent was the use of these natural units in

the East, that even now some of the Arab tribes mete out cloth

by the forearm, with the addition of the breadth of the other

hand, which marks the end of the measure. The width of the

thumb was in like manner added at the end of the yard by

English clothiers; and it is not unusual to see women, even

in this country, test the number of yards in a purchase by

measuring it from the chin to the end of the fingers. The foot

was used by the Romans, and is still a measure in Europe and

America, its length in different places varying not much more

than men's feet vaiy. The height of horses is expressed in

hands, and the depth of water in fathoms, the length of the

two arms extended. The inch is supposed to be the length of

the terminal joint of the thumb, as appears in the French lan-

guage, where pouce means both thumb and inch. We have

also the inch divided into barleycorns, the inch being regarded

as equal to three of these.

So completely indeed have these natural dimensions served

as the basis of all mensuration, that it is only by means of them

that we can form any estimate of some of the ancient distances.

For example, the length of a degree on the earth's surface, as

determined by the Arabian astronomers, shortly after the death

of Haroun-al-Raschid, was fifty-six of their miles. We know

nothing of their mile, further than that it was 4,000 cubits;

and whether these were sacred cubits or common cubits, would

remain doubtful, but that the length of the cubit is given as
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twenty-seven inches, and each inch defined as the thickness of

six badey-grains. Thus one of the earliest measurements of a

degree comes down to us in barley-grains. Not only did

oiganic lengths furnish those approximate measures which

satisfied men's needs in ruder ages, but they furnished also the

standard measures required in later times. One instance

occurs in the reign of Henry I., who, to remedy the irregulari-

ties then prevailing, commanded that the ulna, or ancient ell,

which answers to the modern yard, should be made the exact

length of /lis own arm.

As civilization advanced, the inaccuracy' of such variable

measures as the foot, cubit, etc., were felt, and the necessity of

adopting more precise standards became apparent. To do this,

it was necessary to find, among the objects of nature, a standard

perfectly definite, and at the same time invariable and accessible

to all mankind. To obtain such an object was a matter of

no inconsiderable difficulty. In fact, nature presents only two

or three elements which, with the aid of a profound science

and a refined knowledge of the arts, can be made subservient

to the purpose, and none at all without such aid. The earth

is nearly a solid of revolution, and its form and absolute mag-

nitude are presumed to remain the same in all ages ;
hence the

distance from the equator to the poles is an invariable quantity,

and some definite part of this distance, if exactly ascertained,

might be taken as a standard unit of length. The force of

gravity at the earth's surface is constant at any given place,

and is nearly the same at all places under the same parallel

of latitude, and at the same height above the level of the

sea; hence the length of a pendulum which makes a given

number of vibrations in a given time is constant, and might be

used to determine a standard unit of length.

These two elements, the length of a degree of the meridian,

and the length of a seconds pendulum, are the only ones fur-

nished by nature which have yet been used as a basis of a sys-

tem of measures. One or two others have been suggested, a3
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the beiglit through which a body falls in a second of time, and
the perpendicular height through which a barometer must be

carried till the mercurial column sinks a determinate part, for

example, one-thirtieth of its own length ;
but these distances are

not so susceptible of being accurately determined as the terres-

trial degree, or the length of the seconds pendulum. Mouton,
an astronomer of Lyons, about 1670, proposed as a standard, a

geometrical foot, of which a degree of the earth's circumference

should contain 600,000; and remarked that a pendulum of this

length would make 3959| vibrations in a half hour. In 1611,

Picard proposed a similar method
;
and Huygens first suggested

the pendulum as the unit or standard of measures. No attempt
was made to establish a regular system of measures until the

time of the French Revolution, when a system of weights and

measures, referred to the terrestrial degree, and accommodated
to our arithmetical scale, was adopted in that country.

English Standard Measures.—The English standard unit

of length is the yard, which, in the reign of Henry I., was de-

termined by the length of the king's arm. An act of Edward

II., 1324, provides that the length of 3 barleycorns, vound and

dry, shall make an inch, 12 inches a foot, etc. The difficulty

of determining how much of the end of the grain should be

removed to render it "round" makes this standard rather

indefinite. No record exists, however, of the actual construc-

tion of standard units based upon the use of barleycorns. In

time, for the purpose of securing some uniformity among the

ordinary measures, certain standards were placed in the Ex-

chequer, with which all rods were required to be compared be-

fore they were stamped as legal measures. The oldest of the

standards in existence dates from the reign of Henry VII., but

it has long been disused. There was another similar rod of

the same date, called an ell, though it was not established as a

legal measure, but was conventionally regarded as equal to a yard
and a quarter. That which, till the year 1824, was considered

as the legal standard, was a brass rod of the breadth and
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thickness of about half an inch, placed there in the time of

Elizabeth. This standard was illy fitted for the purpose de-

signed. "A common kitchen poker, filed at the end in the

rudest manner, by the most bung-ling workman, would make as

good a standard. It has been broken asunder and the two

pieces dovetailed, but so badly that the joint is nearly as loose

as that of a pair of tongs."

In the year 1742, some Fellows of the Royal Society, and

members of the Academy of Sciences at Paris, proposed to

have accurate standards of the "measures and weights" of both

nations made and carefully examined, in order that the results

of the scientilic experiments in England and Prance might be

correctly compared. The committee who undertook the mat-

ter, besides the standard in the P]xchequer, found some others

which were considered of good, if not of equal authority. At

Guildhall they found two standards of length, which were only

two beds or matrices, one of a yard, the other of au ell, cut out

of the edges of a brass bar, like that of the Exchequer.

Another, kept in the Tower of London, was a solid brass rod,

about s«ven-teuths of an inch square, and 41 inches long, on

one side of which was a yard divided into inches. Another,

belonging to a clockmakers' company, derived from the Ex-

chequer in IG71, was a brass,rod of eight sides, on which the

length of the yard was expressed by the distance between two

pins or small checks. The committee selected the standard in

the Tower, and Mr. George Graham, a celebrated clockmaker,

in 1742, laid off from it, with great care, the length of the yard

on two brass rods which were then sent to the Academy of

Sciences at Paris
;

on these, in like manner, was set off the

measure of the Paris half toise. One of these was kept at

Paris, the other was returned to the Royal Society, where it

still remains; but unfortunately it was not stated at what

temperature the toise was set off, so that the comparison is now

of little value.

In 1758, a committee of the House of Commons recommended
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that a rod which had been made at their order, by Mr. Bird,

from that of the Royal Society, and marked "Standard Yard

of 1158," should be declared the legal standard of all measures

of length. In the foUowiug year another committee was formed

on the subject, which concurred in the Bird standard, aud au-

thorized Mr. Bird to make a copy of the former rod, which he

completed in 1760. No further action was taken by the govern-

ment until 1824, when a very thorough revision was attempted.

Stimulated by the scientific efibrts of the French philoso-

phers, the English turned their attention to the establishment

of an invariable standard unit of length, and selected as a basis

the seconds pendulum at London. The length of such a pen-

dulum had been determined as early as 1742, by George Gra-

ham, to be 39.13 inches, and used for the construction of a stand-

ard yard. Reports were made in 1816, 1818, and 1820, to the

House of Commons, based on experiments and comparisons, in

which Wollaston, Dr. Young, Capt. Kater, and Prof. Playfair,

took a prominent part. This led to the adoption of the imperial

measures aud standards under George IV., which took effect

January 1, 1826 : these standards were retained by the enact-

ments under William IV., which took effect January I, 1836. In

the imperial measures, the yard copied from the standard of 1760

was to be of brass, and measured at the temperature of 62° F.,

while its length was further defined by declaring that the pen-

dulum beating seconds of mean time in the latitude of London

at the temperature named, in a vacuum at the level of the sea,

should be 39.1393 inches of the above standard. From this

standard measure of length, all the other measures, of weighty

capacity, etc., were also established.

Soon after the .standards were prepared, they were destroyed

by the burning of the Houses of Parliament, 1834; but fortu-

nately the Astronomical Society had procured a most carefully

prepared copy of the imperial standard yard, and the mint was

in possession of an exact copy of the pound, so that it was

poss.ble to reproduce the lost standards with great precision.
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In 1838 a commission was appointed, of which Airy, Baily,

Iloi'schel, Lubbock, and Shepherd were members, which, after

a very thorough investigation of the matter, reported in 1841,

that, since the passage of the act of George IV., several eic^-

ments of reduction of the pendulum experiments, on which

some of its provisions were based, had been found to be doubt-

ful or erroneous, there having been defects in the agate planes
of the pendulum used by Capt. Kater, and errors in finding its

specific gravity, and in reductions for buoyancy of the air and

for elevation above the level of the sea. They concluded

that the course prescribed in the act would not produce the

original yard ;
that the condition that the yard was to be a

certain brass rod was the best that could be adopted ;
and that,

by the aid of the Astronomical Society's scale, and a few other

highly accurate copies known, the standard could be restored

without sensible error. Mr. Baily was selected to prepare
the new standard, with five copies of the preceding on which

tu base his comparison; and on his death in 1844, Mr. Sheep-
shanks continued the necessary observations, executing himself,

in the course of this labor, about 200,000 micrometric measure-

ments. He prepared several standard copies, each being a

square inch bar, of a bronze consisting of copper with a small

percentage of tin and zinc, 38 inches in length, with half-inch

wells sunk to the middle of the bar, one inch from each end, in

which the lines defining the yard are drawn on gold plugs.

Six of these were finally selected and reported by the commis-

sioners in March, 1854; and one of these, marked ''Bronze 19,"

was selected as the parliamentary standard yard, the remaining
five being deposited, along with copies of the standard of

weight, with as many public institutions and scientific bodies.

These standards were legalized in July, 1855; and provisions

made that in case of loss of the parliamentary copy, the

standard should be restored by comparison of the other

selected copies, or such as might be available. From this

statement it is seen that the latest verdict of science is adverse
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to the practicability of basing a system of measures on any in-

variable natural unit of length.

The measures of the American colonies were the same as

those of the mother country at the corresponding period.

Variations naturally grew up in the different colonies, and the

several measures in use being adopted with little or no change
when they became states, the discrepancies continued to exist.

On the 3d of March, 1817, John Quiucy Adams was commis-

sioned by a resolution of the Senate, to examine the subject of

the weights and measures of the United States, and also to

consider the desirableness of adopting the French system, or

one similar to it. The standards employed in the various

custom-houses were examined and carefully measured during
1819 and 1820, under his direction, and in a report published
in 1821 he showed that very considerable discrepancies existed

between the measures of the several states, and often within

the same state. After a careful review of the French system,

he reported unfavorably to its adoption, on account of the dif-

ficulty of the change and the essential inconvenience of a deci-

mal system.

On the 29th of May, 1830, the Senate directed a new com-

parison of the weights and measures in use at the diffeient

custom-houses. This examination was made by Prof. Hassler,

who found that, though considerable discrepancy existed, the

mean value corresponded closely with the English standards

verified in 1770. Under his supervision accurate copies of the

received standards of weights and measm'es were supplied to

all the custom-houses; and by act of Congress, June 14, 1836,

the Secretary of State was directed to have sent to the gover-

nors of all the states a complete set of all standards, for the

use of the several states. These, as well as accurate balances

for adjusting the weights, were supplied ;
and the statutory

standards of every state have been made to conform to the

standards so furnished. No enactments were made concerning

the old English standards of length, which have come down to
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US, as they were necessarily in force unless changed by legis-

lative enactment.

It is to be noticed that the American yard was taken from

a scale made for the United States by Troughton, which was

supposed to be identical with the old standard, and with the

Astronomical Society's scale, but which had never been directly

compared with either. Wlieu this comparison was made with

the bronze bar No. 11, which had been presented to the Uuited

States by the British Government, the yard on the Troughton
scale was fouud to be nearly joVo ^^ ^^ ^^^^^ ^^^ lo^^gj ^'^I'-l

hence all the copies furnished to the states are subject to that

minute correction, since the British yard is unquestionably the

only authentic representative of the old standard from which

our measures are derived. In 1866 Congress authorized the

use of the metric system, but the present indications are that

it will be very tardily introduced.

Measures of extension, as aU'eady stated, are of three dis-

tinct classes: measures of Length, measures of Surface, and

measures of Volume or Capacity. Measui'es of Length are

of several different kinds
;
the common Long Measure, Sur-

veyors' Measure, etc. Measures of Surface include the ordinary

Surface Measure, and Surveyors' Square Measure. Measures

of Volume include the ordinary Cubic Measure, and Meas-

ures of Capacity. Measures of Capacity embrace those of

Liquids and Dry Substances. A few facts in addition to those

already given will be stated.

Long Measure.—Long Measure is the measure of length,

applied to the measurement of the length, breadth, or thickness

of objects ; also to heights and distances. The unit, as already

explained, is the yard, which is identical with the Imperial

yard of Great Britain, divisions and multiples of which g.ve

an irregular scale of derived units. These units were nearly

all originally derived from parts of the human body. Thus,

foot is from the human foot; yard was a rod or shoot; rod is

from a measuring stick or rod
; furlong is from fur, furrow,

22
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and long, meaning long, or the length of a furrow; mile is from

inille jyassuum, a thousand paces ; span is the space measured

by the thumb and little finger extended; cm5«Y, the forearm
;

fathom, the length of the two arms extended. The iitch. is

supposed by some to be derived from the terminal joint of th(!

thumb, though late etymologists get it from uncia, the twelfth

part. The inch was formerly divided into three equal part.-;,

called barleycorns, the length of a grain or kernel of barley.

The geographic mile is equal to 1 minute of one of the great
circles of the earth, hence it equals J^-

of ^\^ of the circumfer-

ence of the earth, which equals about 1.15 statute miles. The

knot, used in measuring distances at sea, is equivalent to a geo-

graphic mile. The English mile is the same as that of the

United States. The German short mile equals 6857 yards, or

about 3
j-^jj

statute miles; the German long mile equals 10125

yards, or about 5| statute miles
;
the Prussian mile equals 823T

yards, or about 4^^ statute miles.

A degree of longitude at any point is ^\-q of the circle pass-

ing through the latitude of that point ;
and as these circles

diminish as we pass from the equator, the degrees of longitude
will diminish. Thus, at the equator, the length of a degree of

longitude is about 69| statute miles; at 25° of latitude, 62Jy

miles; at 40° of latitude, 53 miles; at 42°, 51^ miles; at 49°, 45^

miles; at 60°, 34
j^^- miles, etc. A degree of latitude also varies,

being 68.72 miles at the equator; from 68.9 to 69.05 miles in

middle latitude
;
and from 69.30 to 69.34 miles in the polar

regions.

Surveyors' Linear Measure is used by surveyors and engi-

neers in measuring the dimensions of land, distances, etc. The
unit is the chain, called Gunter's chain, from Edmund Guuter,

the reputed invenior, an English mathematician, born 1581, died

1626. It is 4 rods, or 66 feet in length, and is divided ac-

cording to the decimal system into 100 equal parts called links.

This division reduces all the calculations to the decimal system,
and thus greatly simplifies the operations.
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The deaomination rods is seldom used by surveyors, dis-

tances being represented in ctiains and links. Since each link

is
y-J^-j

ol" a chain, the number of links is generally expressed as

a decimal; thus 5 chains and 47 links are written 5.47 chains.

Engineers generally use a chain 100 feet long, containing 120

links, each 10 inches in length. Mariners' Measure is used by
seamen in measurmg distances, the depth of the sea, etc. The

old method of Cloth Measure is practically obsolete, the divi

sion of the yard being into }ialoes, quarters, etc., and cloth

being thus sold instead of by the nail or inch. At the custom-

houses, the yard is divided into tenths, hundredths, etc.

Surface Measure.—Surface or Square Measure is used in

measuring surfaces, as land, boards, amount of painting, paper-

ing, plastering, paving, etc. The term Perch is from tlie

French perche, a pole ;
rood is supposed to be a corruption

of j-od; acre was, primarily, an open plowed or sowed field.

The unit for laud is the acre
;

for other surfaces it is usually

the square yard. The Perch is a surface equivalent to a

square rod. The Rood is less used than formerly. A square

piece of land, measuring 209 feet, or about 70 paces, on each

side, equals very nearly 1 aci'e.

Surveyors' Square Measure is used by surveyors in comput-

ing the area or contents of land. The perch and rood are not

so much used as formerly, the contents of laud being commonly
estimated in square miles, acres, and hundredths. Govern-

ment lands are divided by parallels and meridians into town-

ships, which contain 36 square miles or sections, and each sec-

tion is subdivided into quarter-sections. Hence 640 acres

make a section, and 160 acres a quarter-section. A hide of

land, which is spoken of by ancient writers, is 100 acres.

Cubic Measure.—Cubic or Solid Measure is used in measur-

ing things which have length, breadth, and thickness. The

fundamental unit seems to be the cubic foot. The other units

are not in a regular scale, but are parts or multii)lesof the

cubic foot. The old unit for measuring timber was the



508 THE PHILOSOPHY OF ARITHMETIC.

ton. Round timber, when squared for use, is supposed
to lose \] hence a ton of round timber is said to contain

such a quantity of timber in its rough or natural state as,

when hewn, will make 40 cubic feet, and is supposed to. bo

equal in weight to 50 cubic feet of hewn timber. Timber is

now generally sold by board measure, the ton being nearly ob-

solete. A cord of wood is a pile 8 feet long, 4 feet wide, and

4 feet high. A cord foot is a part of this pile 1 foot long ;
it

equals 16 cubic feet.

A perch of atone or masonry is 16^ feet long, 1^ feet wide,

and 1 foot high; it contains 24| cubic feet. A cubic yard of

earth is called a load. A square of earth is a cube measuring
6 feet on a side, and contains 216 cubic feet. In civil engineer-

ing, the unit is the cubic yard, to w;hich all estimates for ex-

cavations and embankments are reduced. Tlie measurements
are taken with a line divided into feet and decimals of a foot.

A Register Ton is the standard for estimating the capacity or

tonnage of vessels, and is 100 cubic feet. A Shipping Ton,
used in estimating cargoes, in the United States is 40 cubic

feet; in England, 42 cubic feet.

Liquid Measures.'—Liquid Measures ai'e used for measuring
lill kinds of liquids. They are of three classes: Wine Measure,
Beer Measure, and Apothecaries' Fluid Measure. Wine meas-

ure is now used for measuring nearly all kinds of liquids. It

was called wine measure because it was used to measure wine,
instead of beer, which was measured by another measure.

The standard unit of wine measure is the gallon. It is

intended to represent the old wine gallon of 231 cubic inches,

but is defined as containing 58,372.2 grains of distilled water

at its maximum density, weighed in air of the temperature of

62° F., and barometric pressure of 30 inches. This is identical

with the old Winchester gallon of England, so called from the

standard having been formerly kept at Winchester, England.
The Imperial gallon, adopted by Great Britain in 1836, is

defined as containing 10 pounds avoirdupois of distilled water.
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at a temperature of 62° Fahrenheit, the barometer standing at

30 inches. It contains 277.274 cubic inches. The American

gallon is thus 0.83311 of the Imperial gallon, or about 6 of the

former equal 5 of the latter.

There were in England, from 1650 to 1688, three different

measures of the wine gallon. The one of general usage con-

tained 231 cubic inches to the gallon. Another, the customary
standard at Guildhall, supposed to be of the same capacity,

was found by measurement to contain only 224 cubic inches.

A third, the real and legal standard, preserved at the Treasury,

contained 282 cubic inches. The corn gallon differed from any
of these, being 268.6 cubic inches. Some suppose the gallons

of 231 and 282 cubic inches to have originated under separate

enactments, the latter from one of Henry VII., directing that

the gallon contain 8 pounds of wheat; but Oughtred holds

that the larger or beer gallon was allowed for liquids which

yield froth, as beer, etc., and the smaller for such liquids, as

wine and oil, which do not froth, and thus their exact volume

is immediately indicated.

The term gill is from Low Latin gilla, a drinking glass ;

•pint is from the Anglo-Saxon pyndan, to shut in, to pen, or

from the Greek pinto, to drink
; quart is from the Latin quartus,

a fourth. The derivation of gallon is not clear; in the French,

a galon is a grocer's box. Barrels and hogsheads are of varia-

ble capacity. The values given in the tables are used in

estimating the capacity of wells, cisterns, vats, etc. In Mas-

sachusetts the /barrel is estimated at 32 gallons. A pint of

water weighs nearly one pound, hence the old adage, "A

pint's a pound, the world around."

Ale or Beer Measure was formerly used in measuring ale,

beer, and milk. It was named Beer Measure from its being

so extensively used in measuring beer, in distinction from the

measure used for wine and oil, etc. The measure was greater

than wine measure, as beer was less costly than wine, or, as

some have supposed, on account of the frothing of beer. The
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unit is the gallon, which contains 282 cubic inches, or 10.179933

pounds avoirdupois of distilled water. This measure is going
out of use; milk and also beer and ale are now generally meas-

ured by Wine Measure.

Apothecaries' Fluid Measure is used for measuring liquids in

preparing medical prescriptions. Minim is from the Latin

minimus, the least, the minim being the smallest fluid measure

used. Several of the other terms are formed by prefixing y?uit?

to the terms of Apothecaries' Weight. Gong, is the abbre-

viation of congius, the Latin for gallon. 0. is the initial of

octarius, the Latin for one-eighth, the pint being one-eighth of a

gallon. In estimating the quantity of fluids, 45 drops equal

about a fluid drachm; a common teaspoon holds about 1 fluid

drachm
;

a common tablespoon about h a fluid ounce
;
a wine-

glass about 1^ fluid ounces; a common teacup about 4 fluid

ounces.

Dry Measure.—Dry Measure is used for measuring dry sub-

stances, such as grain, fruit, salt, coal, etc. The unit of dry
measure is the bushel, which is divided into pecks, quarts, etc.

The term bushel is derived from a word meaning bo.r. The
term peck is supposed to be a corruption of pack, or to be de-

rived from the French picotin, a peck. The Imperial bushel

of England, by the act of George lY., was defined to contain

8 gallons. It thus contains 80 pounds of distilled water, or

2218.192 cubic inches. The "heaped bushel" of 2815 cubic

inches, declared by the same act as a measure for coals, lime,

potatoes, fruit, and fish, was abolished in 1835, by an act
'

of Parliament, during the reign of William IV. The Win-
chester bushel, in use from the time of Henry VII. to 1820,

contained 2150.42 cubic inches. The .original standard Win-
chester bushel, as well as the yard, is still preserved in the

museum at Winchester.

The unit of dry measure in the United States is the Win-
chester bushel, the same as the old English standard. Its form

is a cylinder, 18^ inches in diameter, and 8 inches deep. Its
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volume is 2150.42 cubic inches, and it contains '77.n2t413

pounds avoirdupois of distilled vs^ater, at its maximum density,

39.8° F., barometer 30 inches. The New York bushel is de-

clared to contain 80 pounds of distilled water at its maximuni

density, and is thus identical with the Imperial bushel of Great

Britain. The chaldron, consisting in some places of 36 bushels,

and in others of 32 bushels, is used in some parts of the United

States for measuring coal and coke, but is being discontinued

here as it has been in England. One half of a peck, or four

quarts, is called a dry g dlon. The chaldron was divided into

vats, sacks, and bushels. The coal bushel held 1 quart more

than the Winchester bushel. Twenty-one chaldrons made a

score.

The cental is a standard recently recommended by the Boards

of Trade in New York, Cincinnati, Chicago, and other large

cities, for estimating grain, seeds, etc. Were this standard

generally adopted, the discrepancies of the present system of

grain dealing would be avoided. Bushels are changed to cen-

tals, by multiplying by the number of pounds in one bushel,

and dividing the product by 100. The remainder will be huu-

dredths of a cental.



CHAPTER III.

MEASURES OF WEIGHT.

WEIGHT
is the measure of the force of gravity. All bodies

are attracted towards the center of the earth in propor-
tion to the quantity of matter contained. This influence beinp-
a consta,nt force, it was seen that it might be employed in com-

paring bodies, and determining their relative quantity of ma^
ter. Some standard being fixed upon, the relation of bodies to

this standard may be expressed numerically, and thus there

will arise a system of measures denominated weights.
Measures of Weight, like those of length, originated with

natural objects. Seeds seem to have supplied the original unit.

The carat, used for weighing in India, is a small bean. The
basis of the English scale of weights is a grain of wheat.

Henry III. enacted that an ounce should be the weight of 640

dry grains of wheat from the middle of the ear. The penny-
weight was the weight of an English penny, which varied in

size until the time of Queen Elizabeth.

The weight of a body is the measure of the force by which
It is drawn towards the center of the earth. The determination
of weight consists in the comparison of the object to be weio-hed
with some fixed standard. Such a standard could not be pre-

cisely defined by written law or oral explanation, or in anv
way except by the test of muscular resistance. Having a fixed

standard, the weight of bodies would be estimated by comparing
them with this standard. The comparison of weight was not

quite so readily made as that of length, as a balance was neces-

sary, the construction of which required some degree of me-

( 512 )
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chanical knowledge. The balance, or scales, however, is

known to have been in existence, in a rude form, from very

early times. The Greeks, as appears from the Parian chroni-

cle, believed weights, measures, and the stamping of gold and

silver coins to have been alike the invention of Phidon, ruler of

Argos, about the middle of the 8th century B. C.

The standards of weight were even less definite than those

of length. This is apparent from the use of such units as

stone, load, last, etc. Even the term pound (pondus) implied

only weight indefinitely. The grain, taken from the grains or

corns of wheat, was, as a standard of small weights, about the

only denomination of weight that would universally convey

anything like a definite idea. A statute of Henry III., in 1266,

enacts "that an English penny, called the sterling, round with-

out clipping, shall weigh 32 grains of wheat, well dried and

gathered out of the middle of the ear; and 20 pence (penny-

weights) to make an ounce, 12 ounces a pound, 8 pounds a

gallon of wine, and 8 gallons of wine a bushel of London,

which is the 8th part of a quarter."

In some countries, measures of weight seem to have had

their origin in the measures of value. Thus, in Latin, to pay

money was to weigh it; and nearly all weights are supposed

to have had their origin in the practice of weighing specie.

The Sicilian pound, which has been adopted in all countries

that accepted the Roman system, and the German mark,

both fundamental in all European weights, are said to have

been originally quantities of silver. England accepted the

pound thus derived, and also attempted to give precision to

smaller sums of money by weighing them by grains of corn, as

already stated. Even as late as the time of Elizabeth, pay-

ments seem to have been invariably made by weight; indeed,

the whole metrical system of England was derived from money

weights. The payments by tale having superseded those by

weight, the real origin of weights is liable to be overlooked.

As science was developed, it began to concern itself in the

33
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establishment of a fixed system of weights. The object was to

find some invariable standard by which such a system could

be derived. As there is a constant ratio between the volumes

and weights of the same substances when placed in the pame

physical circumstances, it was seen that standards of weight

may be derived from those of length. For example, a cubic

inch of distilled water, at the same temperature and under the

same atmospheric pressure, will always have the same weight.

Advantage has been taken of this property of bodies to connect

measures of weight with those of length, and the weight of a

given bulk of water at a fixed temperature is now the standard

from which all weights are derived.

The establishment of a system of weights early engaged the

attention of the English people. In order to arrive at some

definite standard, it was declared, in the Great Charter, that

the weights should be the same all over England; but no ordi-

nance, perhaps, was ever so ill observed. The old English

pound, which is said to have been the legal standard of weight
from the time of William the Conqueror to that of Henry VII.,

was derived from the weight of grains of wheat, as stated above.

Henry YII. altered this weight, and introduced the Troy

pound instead, which was one-sixteenth part, or three-fourths

of an ounce, heavier than the Saxon pound. The Troy pound
was divided in the same manner as the Saxon pound, into

ounces, pennyweights, and grains; but the pennyweight con-

tained only 24 grains, and consequently a grain Troy became

a much heavier weight than the grain of wheat. In fact, the

pound Troy contains 5,160 grains, while the Saxon pound,
which was divided into 7,680 grains, contained only 5,400

Troy grains.
'

The avoirdupois pound was introduced by
a statute of Henry YII I. Its first object was to weigh
butchers' meat in the market, but it gradually came to be

used for all kinds of coar.se goods or merchandise. Two

legal measures of weight were thus established, and have con-

tinued to l)e used iii EnQ:Iand ever since, and have been also
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introduced into this country. The standard of these weights

was definitely fixed by Act of Parliament in 1824. The

standard brass weight of the pound Troy, made in 1758, and

then in custody of the Clerk of the House of Commons, was

declared to be the Imperial standard Troy pound, and that

7,000 Troy grains shall constitute an avoirdupois pound.

The retention of two diiferent systems of weights was in

compliance with the common usages of the country, Mr.

Davies Gilbert stated the reasons for it as follows :

" The Troy

pound appeared to us to be the ancient weight of this kingdom,

having, as we have reason to suppose, existed in the same state

in the time of Edward the Confessor; and there are reasons,

moreover, to believe that the word Troxj has no reference to

any town in Prance, but rather to the monkish name given to

London of Troy Novant, founded on the legend of Brute.

Troy weight, therefore, according to this etymology, in fact, is

London weight."

It was also enacted that if the standard Troy pound should

be lost or destroyed, it was to be restored by a reference to a

cubic inch of distilled water, which has been found and is de-

clared to be 252.458 Troy grains at the temperature of fi2^

Fahrenheit,' the barometer being at 30 inches.- The weight of

a pennyweight Troy is thus to that of a cubic inch of distilled

water in such circumstances, as 24 to 252.458, or of 24,000 to

252,458; so that the weight of the cubic inch of distilled water

must be conceived to be divided into 252,458 equal parts, and

24,000 of such parts will be the standard pennyweight, or 240

of such pennyweights will be the standard pound.
A committee appointed in 1843 published a report in 1854,

in which they determined to take the avoirdupois pound of

7,000 grains as the standard, and to construct the Troy pound
from it. They took the brass Troy pounds in the custody

of the Exchequer and certain platinum pounds in the possession

o( the Royal Society and others; but the former being found to

have gained in weight by oxidation, only the platinum pounds
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were used. From them a platinum pound was prepared,

weighing in vacuo 6999.99845 grains. The form of the weight
is a cylinder, with a groove surrounding it a little above the

middle of its height, for the insertion of the ivory fork, used in

lifting it. The weight is enclosed in a mahogany box, the parts
of which, when screwed together, cause the weight to be im-

movable. This box is enclosed in another box, and with the

standard yard in a third box, and finally in a stone case, in the

vaulted stone room of the Exchequer.
For philosophical purposes and in delicate weighing, Troy

weight only is used, and the weight is usually reckoned in

grains By this means fractional numbers are avoided, and no

ambiguity can arise, as there are no other grains than Troy
grains. Dr. Kelly, in his Universal Cambist, an elaborate and
useful work, states that the dram avoirdupois, like the drachm
of the apothecaries, has sometimes been divided into 3 scruples
and 60 grains; but as no such weight as an avoirdupois grain
ever existed, the use of the expression is an instance of the

confusion inseparable from having different systems of weights
.n which the same names are applied to things totally distinct.

Aside from the British statute weights, there are in England
numerous other discordant denominations of weiglit, used for

weighing different kinds of merchandise. One of the most
common of these is the stone, which has a great variety of

different significations. In London, however, only two stones

are generally used, the one of 8 pounds for butchers' meat, and
another of 14 pounds, for other commodities. A stone of glass
has been reckoned at 5 pounds. The following are some of the

other old weights: A seam of glass, equal to 24 stones
;
a truss

of hay, equal to 56 pounds; a truss of new hay until the first

of September, equal to 60 pounds ;
a truss of straw, equal to

36 pounds. In weighing wool the following denominations have
been used: 1 pounds equal 1 clove; 2 cloves equal 1 stone; 2

stones equal 1 tod; 6^ tods equal 1 wey ; 2 weys equal 1

sack ; 12 sacks equal 1 last ; a pack of wool equals 240 pounds.
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In weighing cheese and butter, 8 pounds equal 1 clove, and

56 pounds equal 1 firkffi. Many of these weights are now ob-

solete.

Ancient English Measures.—The basis of the ancient English

measures of capacity and weight was the ancient Anglo-Saxon

pound. This pound contained 5,400 grains, the grains being

22^ to the pennyweight, and the pennyweight being equal to

32 grains of average quality taken from the middle of the ear.

Eight of these pounds formed the gallon of dry and liquid

measure, 8 of these gallons the bushel, and 8 of these bushels

the quarter. The old English pound stood to the Troy pound
as 15 to 16. A few of these standard gallons and bushels have

been preserved, and are found lo be somewhat less than the

proportion indicated. The Troy pound was not known as a

legal standard until certain changes were introduced into the

currency by Henry VIII.

The sack of wool was roughly reckoned as equal to the quar-

ter of corn; 15 Saxon ounces formed the libra mercatoria, or

pound of 7000 grains now called avoirdupois. Fourteen such

pounds made the stone of wool, and 28 such stones constituted

the sack. This calculation, however, makes the sack of wool

lighter than the quarter of wheat by nearly four pounds.
Another ancient weight was the charrus of lead. It con-

tained 2,100 avoirdupois pounds; and, divided by the old hun-

dred, 108 pounds, is found to contain nearly 19^ hundred, which

is the modern /other or fodder. The charrus contained 30

fotmale, or pedes, each pes containing 6 stone, less 2 pounds
The foot or pig of lead is the tenth of a cubic foot of lead.

Iron was measured by the piece, 25 of which formed the hun-

dred weight of 108 pounds. Wax and spices were estimated

by the same hundred. A last of wool was 12 sacks
;
a last of

herrings, ten thousand, each hundred being 120
;
a last of hides

was 100, that is 10 dakers or dikers, each diker being ten.

The American System.—Our system of weights was derived

from those of the mother country. These, as already shown.
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were not framed by scientific men, but assumed their present

form gradually, influenced by various circumstances, from which

cause arose that irregularity which they exhibit. There are

four kinds of weight in commou use
; Troy Weight, Apotheca-

ries' Weight, Avoirdupois Weight, and Diamond Weight.

Troy Weight.—Troy Weight is used for weighing gold, sil-

ver, jewels, in ascertaining the strength of liquors, in philosoph-

ical experiments, etc. The term Troy is said to be derived from

Troyen, the name of a town in France, where the weight was
first used in Europe, it having been brought from Cairo in Egypt

during the Crusades of the 12th century. Others maintain

that it has no reference to any town in France, but rather to

the monkish name given to London, of Troy Novant, founded

on the legend of Brute, Troy weight being, therefore, London

weight.

The term pound is from the Latin pendo, I bend or

weigh. The term ounce is from the Latin uncia, a twelfth part,

the ounce being one-twelfth of a pound. The pennyweight was

the weight of the old English penny. The term grain is from

a grain of wheat, which was the primitive standard of all the

weights in England. Thirty-two of these taken from the mid-

dle of the ear and well dried, constituted a pennyweight, 20

pennyweights an ounce, and 12 ounces a pound. The pound
tlius derived was the legal standard of weight from the time of

AVilliani the Conqueror to that of Henry VII. The latter

king changed this weight and introduced the Troy pound, which

was ^rr part, or | of an ounce, heavier than the Saxon pound.
The Troy pound was divided in the same manner asthe Saxon

pound, that is, into ounces, pennyweights, and grains; but the

pennyweight contained only 24 grains, and consequently u

grain Troy became much heavier than a grain of wheat.

The^Troy pound is the standard unit of weight in the United

States, and is the same as the Imperial pound Troy of Great

Britain. It is equal to the weight of 22.794377 cubic inches

of distilled water, at the temperature of 39.83° Fahrenheit,
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the barometer at 30 inches. lu the United States Mint, the

Troy ounce is adopted as the standard, and all weights are ex-

pressed in decimal multiples and sub-multiples of the ounce.

The symbol oz. is from the Spanish word onza, signifying

ounce, though Webster derives it from the character 3, placed

after the 0, according to an ancient method of abbreviating ter-

minations
;

lb. is from the Latin libra, a pound ; ptvl. is a com-

bination of p. for penny, and lut. for weight ; dwt., from dena-

rius and weight, is nearly obsolete, and seems a less appro-

priate term than pwt., being partly Latin and partly English.

Apothecaries' Weight.—Apothecaries' Weight is used only in

mixing medicines. Apothecaries buy and sell their drugs by

Avoirdupois Weight. The name arises from the weight being

used by apothecaries. The term scrapie is from the Latin

sarupulus, a little stone. The term dram is from the Greek

drachnia, a piece of monerj.

The symbols have been supposed to be modifications of the

figure 3, suggested by there being 3 scruples in a dram. Cham-

poUion, however, has traced them back to the hieroglyphics of

Egypt. The unit is the pound, and is identical with the Troy

pound, as are also the ounce and grain, the ounce being differ-

ently divided.

Avoirdupois Weight.—Avoirdupois Weight is used for

weighing everything except jewels, gold, silver, liquors in phil-

osophical experiments, etc. Avoirdupois Weight, it is said,

was introduced by a statute of Henry VIIL The term occurs

in some orders of his, A. D. 1532
;
and Queen Elizabeth, in 1588,

ordered a pound of this weight to be deposited in the Exche-

quer as a standard. It was first used in England to weigh
butchers' meat, but gradually came to be used to weigh all

kinds of coarse goods or merchandise.

The term Avoirdupois is said to be derived from the French

avoir du poids, signifying to have weight. Others think it is

from avoirs, the ancient name of goods or chattels, and poids,

signifying weiglit in the Norman dialect. Another authority
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says it is from the old French aver de pes, property or mer-

chandise of weight, translated by Kelham, "any bulky com-

modities." Still another derivation is from the old French

verb averer, to verify. The term ton is from the Saxon tunne,

a cask. The origin of the other terms has already been given.

The symbol cwt is from centum and weight.

The unit is the pound. It consists of 7000 Troy grains, and

is consequently heavier than the pound Troy, which contains

only 5,760. The ounce Avoirdupois, however, is lighter than

the ounce Troy, owing to the difference in the division of the

pound. A pound of feathers is therefore heavier than a pound
of gold, while an ounce of gold is heavier than an ounce of

lead.

The standard Avoirdupois pound of this country is the

weight of 27-7015 cubic inches of distilled water, at its maxi-

mum density, or 39.83° Fahrenheit, weighed in the air, the

barometer being at 30 inches. It is identical with the Imperial

pound Avoirdupois of Great Britain, which is the weight of

27.7274 cubic inches of distilled water at the temperature

of 62° Fahrenheit. The diflTerence in the number of cubic

inches is owing to the difierence of temperature of the water

employed.
In Great Britain 28 pounds equal I quarter, 112 pounds

equal 1 hundredweight, and 2240 pounds equal 1 ton. These

are called the long hundred and long ton : they were formerly

used in this country, but are now only used at the custom-

houses in invoices of English goods, in the wholesale iron

and plate trade, and in wholesaling and freighting coal from

the coal mines of Pennsylvania.

Diamond Weight.—Diamond Weight is used in weighing

diamonds and other precious stones. In this weight. 16 parts

equal 1 grain, and 4 grains equal 1 carat. One grain of

this weight equals | of a grain Troy. The term carat Is

also used to indicate a proportional part of a given weight,

and is then called assay carat. Each assay carat consists of

4 assay grains, and each assay grain, of 4 assaif quarters.



CHAPTER IV.

MEASURES OF VALUE.

T^HE Value of anything is its worth, or it is the property or

J- properties of a thing which render it useful or estimable.

It has also been defined, as the estimate of a given commodity in

comparison with other commodities. It is readily seen that it

is not easy to give a definition of value entirely satisfactory.

The two principal elements of the value of anything, are utility

and difficulty of attainment.

Value is distinguished from price, which is the estimate

given of any commodity by one value alone—the value of the

precious metals. There can be a general rise in prices, since

the value of the single measure may fall; but there cannot be

a general rise in values, for values are relative and mutual.

There may be, of course, a great rise or fall in any one thing
when it is scarce and in demand, or abundant and neglected.

There cannot be a universal rise or fall in values, for if such a

case could be conceived, no one would get any more or less in

either case than before.

The value of any commodity or service is affected by two

cau'ses—demand, which is temporary; and the cost of produc-

tion, which is permanent. In the long run, a particular value

conforms to the last named cause; but from time to time it is

regulated by demand and supply, and may, therefore, rise and

fall, far above or far below the cost of production. From the

fact that demand and labor determine values, some economists

have insisted that the first of these causes is the true measure

of values
;
while others maintain that value is determined by

(521)
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the second.
'

Both, however, are determining causes, though
under different circumstances; and the statements, that labor

is the cause of value, and demand is the cause of value, are,

though apparently contradictory, two phases of the same fact.

A measure of value is one of the primal necessities of society.

The united dependence of individuals creates the necessity of

an exchange between two services or utilities. For such an act

of exchange, it is essential that the things exchanged sho^uld be

measured by some standard of value well understood between

the contracting parties. To illustrate, suppose A produces
shoes and B produces bread. Now A may want bread before

B wants shoes. The immediate exchange of shoes for bread

would not be convenient; but the exchange between the parties

may still take place by the intervention of some medium of

exchange. If B receives this medium for bread, he takes it in

the faith that at bis pleasure he may complete the exchange
with A by the purchase of shoes, or may even employ the right

to shoes assigned to him by the transfer of a portion of this

medium, in procuring any other utility which he may desire.

Hence a sale is said to be half of an exchange.
The necessity of some simple measure or representative of

value, which could be employed as a medium of exchange, would

be early felt. The objects first selected seem to have been organ-
ized bodies. Thus cattle, pigs, dried fish, and the skins of

animals, have been used. The tendency, however, seems to

have been to employ metallic substances. At first the baser

metals were used as money. Iron was the primitive money
of the Lacedemonians, and copper of the Romans. In most

countries the precious metals were early adopted for this pur-

pose. When first used, they were in the shape of bars or

ingots, and were exchanged by weight. Aristotle and Pliny
tell us that this is the method by which the precious meta's

were originally exchanged for other things in Greece and

Italy. The Bible also states tL.\t Abraham weighed 200 shekels

of silver and gave them in exchange for a piece of ground
which he had purchased from the sons of Heth.
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The medium of exchange, it is clear, must be, so far as possi-

ble, of persistent value, that is, liable to the fewest possible

fluctuations of intrinsic value, and capable of being transferred

for very nearly equal quantities of utilities at deferred periods.

Hence the basis of a circulating medium must be a commodity
which is of nearly absolute value. To possess this quality, it

must be produced in nearly equal quantities by very nearly

equal labor. Almost the only things which possess these

characteristics are the precious metals, gold and silver; and

consequently they have been almost universally selected as a

medium of exchange. These two metals are still further

adapted to a monetary use by being comparatively indestructi-

ble. Something is needed that can be treasured up for an in-

definite period, without spontaneous alteration, waste, or

decomposition, while waiting for an exchange. The material

selected should also be homogeneous, or of equal value through-
out its whole substance; and furthsr, it must also be susceptible

of easy division ard reunion. Since these qualities are pos-

sessed almost exclusivuly by gold and silver, it is not surprising

that all societies, spontaneously and as by instinct, have adopted
the precious metals as money.

There is also a peculiar fitness found in the relation of gold

and silver to each other, giving us two media of different fixed

values. The circumstances under which they are found, and

the labor required to produce them, are such that there has

been but little disturbance in the mutual values of gold and

silver; and although there can never be a precise ratio of in

trinsic value possessed by each of the two metals, yet in modern

times the margin of oscillation is so narrow, that both may be

used simultaneously as media of exchange, the one for larger

and the other for smaller values.

In order to answer for money, however, a mass of metal

must be issued by an authority which gives to it a practical

guaranty of its weight and fineness. It has thus been neces-

sary for the government of every civilized country to coin its
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own money, to prevent the coinage by private parties, and to

prohibit by severe penalties the forging of coins, the fabrica-

tion of counterfeit coins, or coins of less weight than the stan-

dard, or made up in whole or in part of some baser or less

valuable metal. The necessity for this security is so great that

hovvever much governments have tampei'ed with the weight of

the nominal quantity, they have seldom, unless thoroughly de-

moralized and desperate, ventured on altering or debasing the

standard; and when they have done so, the result has been

ruinous in the last degree.

It was the practice in early ages to pay money by weight ;

from which it would seem that coins, in the strict sense of

metallic masses of a certified weight, were unknown. The

practice of weighing money, however, continued for ages after

coins were in use. Where the system of coinage originated is

not known, though it has been ascribed to different persons.

He who first shaped a metal into pieces of convenient

size, marked with a distinct value, thus avoiding the need of

the hammer and chisel to cut it off, and a balance to weigh it,

was the first inventor of coins. History is silent respecting
his name, his country, and the date of the invention. Homer

speaks of workers in metals, but makes no mention of coined

money. Herodotus says the Lydians, so far as he knew, were

the first to use struck money, and there are reasons for thinking
with him that the invention was Asiatic. The subject will be

more fully considered subsequently.

Originally the coins of all countries seem to have had the

same denominations as the weights commonly used in them,
and contained the exact quantity of precious metals indicated

by their name. Thus, the talent was a weight used in the

earliest period by the Greeks, the as or pondo by the Romans,
the livre by the French, and the pound by the English and

Scotch
;
and the coins originally in use in Greece, It;Uy, France,

and England, bore the same names and weighed precisely a

talent, a pondo, a livre, and a pound. This arose from the
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original custom of making payments by tiie weight of the arti-

cles used as a medium of exchange. The standard has not,

however, been preserved inviolate, in either ancient or modern

times. It has been less degraded in England than anywhere

else; but even there, the quantity of s'lver in a pound sterling

is less than one-third part of a pound weight. In France, the

livre current in 1789 contained less than one-sixty-sixth part
of the silver implied in its name. In Spain and some other

countries the depreciation has been carried still further.

When the use of coins has once been adopted, all values in con-

tracts and other engagements are rated or estimated in money,
and it is usual in almost all countries to enact that coins of

legal and standard weight and purity shall be legal tender, and

to declare that no legal proceedings of any kind shall be insti-

tuted on account of any debt or pecuniary obligation against

any individual who has offered to liquidate the same by pay-
ment of an equivalent amount of the recognized com of the

country.
In the use of metals for money, it should be remembered

there is simply an exchange of values. Equivalents are still

given for equivalents. The exchange of a barrel of flour for

an ounce of unfashioned gold is as much a barter as if it were

exchanged for an ox or a barrel of beer ; and if the metal were

formed into a coin, or marked with a stamp declaring its weight
and fineness, it would make no difference in the nature of the

exchange. The notion has been entertained that coins are

merely the signs of values. But they have no more claim to

this designation than bars of iron or copper, sacks of wheat, or

any other article. A draft or check may not improperly be re^

garded as a symbol of value
;
but a coin is itself an article of

value. A dollar is not a sign ;
it is the thing signified.

The use of two precious metals, gold and silver, gives what

is called a double currency. This produces some inconvenience

on account of slight variations in the relative value of the two

metals. In England, in 1808, the proportion was fixed at 1 to
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15^, which slight]}- undervalued the customary proportion of

gold, and hence gold was seldom or never seen. The great
discoveries of gold in Australia and California slightly re-

versed the ratio, undervaluing the silver, the consequence of

which is that gold has been, to a great extent, substituted for

silver, and the latter metal exported in vast quantities. It

seems likely, however, on account of improvements in methods
of extracting silver from other ores and the cheapening of

quicksilver, that the margin of oscillation will be consider-

ably narrowed. Such oscillations, however, it is apparent, lead

to many inconveniences in the use of a double currency, and
France is said to be the only nation in which both metals are
a legal tender. In England and our own country, gold is the
actual standard. Silver and copper are issued, but are so

much overvalued that they could not be exported in the shape
of coins, and yet so regulated as to obviate the risk of pri-
vate coining. In England, silver is not legal tender for more
than 40s., nor copper for more than 12d., or if offered in farth-

ings, for 6d. In the United States, silver is a legal tender up
to $5. The German Empire has adopted gold alone as a legal

tender; and Denmark, Sweden, the Netherlands, and some other

countries, have done the same.

Paper Money.—But how great soever the advantages result-

ing from the employment of gold and silver as money, there
are also many disadvantages. The use of a metallic currency
is accompanied by a heavy expense ;

and there is a much greater
difficulty in eflecting payments by the use of coin than we
might at first suppose. The cost of the wear and tear of the

currency of a large country like England or the United States,

allowing only a small percentage for the same, would amount
to several millions of dollars a year. But the difficulty or in-

convenience of the transportation of coin in making payments,
is even a more serious objection. A million of dollars in gold
would weigh nearly two tons, and would require a wagon to

transport it. It is also inconvenient to make small payments
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between places remote from each other, inasmuch as the expense
of sending gold by express, and the premium to guarantee it

against loss, amount to a considerable sum. Hence arose the

necessity of using for money some less valuable and more

portable material than bullion
;
and hence, also, the origin of

bills of exchange, checks, and other devices for economizing
the use of money. The importance of such a representative cur-

rency appears also in the fact that without it at least four or

five times as much gold and silver would be needed as with it.

Indeed, without some such tokens or representatives of money,
it would bo almost impossible to meet the demands of barter

%nd commerce in civilized countries.

Of the substitutes for gold and silver, paper notes, payable
on demand, have been by far the most generally adopted, and

are, in all respects, the most eligible. Intrinsically they are

almost destitute of value, so that their employment and their

loss costs next to nothing; and they may be carried about or

transmiited by mail with the utmost facility. Possessing no

value of themselves, their worth must depend entirely on arti-

ficial means or regulations. They are usually issued as substi-

tutes for, or a representative of coin, the issuer being bound to

pay in coin the sums they represent, on demand of the holder.

For the issue of such notes it has been found necessary to es-

tablish banks of issue, and the questions that grow out of a

banking system are among the most interesting that can pre-

sent themselves to the mind of the economist. Bank notes,

however, are not the only forms of a representative currency.

Bankers' checks, private checks, bills of exchange, etc., and all

analogous securities, accomplish the same purpose.

The basis of such securities, it must be remembered, is

confidence—the confidence of the holder that they can be

converted at his discretion into that which alone fulfills the

conditions of a currency, the precious metals. It thus appears
that the most of the business of civilized countries is not

transacted with money, but upon faith, confidence in promises,
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a belief that men and institutions will do what they have

promised. Notes are sometimes issued expressed in money
value, but based on other values, as land, shares of stock, etc.,
and no harm ensues ordinarily, as no one will take them for

more than they are worth; and since there is no compulsion,
society will accept no more than it needs.

An essential element of such a currency is that it must be
convertible and voluntary. Occasionally governments give
their own paper, or the paper of some institution under their

control, a forced circulation. Such an act disturbs the currency
of a country, and often produces suffering and lasting injury to

credit. A convertible currency cannot be extended beyond
the amount which a community requires; but an inconvertible

currency may be issued to any amount, and may be made to

circulate extensively. The immediate effect of such an issue

is to displace the metallic currency, which is either hoarded or

exported. A very small premium on the precious metals is

suf&cieut to banish them from circulation
;
and the forced currency

being over-valued in comparison with the metallic currency, and
of compulsory acceptance, no one will pay in the dearer medium

;

and the coin will command a premium, or paper will be at a

discount.

Such an act on the part of a government is a wrong to the

citizen as well as a source of disaster to the state. To promise
money and give something else, is a fraud; and to force the

acceptance of such a currency is as great a roljbery of the

public as the circulation of base money. The very fact of a

circulation being compulsory is an indication that the currency
is not, on its own merits, worth its nominal value; and the

result is that such securities not only greatly depreciate, but
often become worthless, and their repudiation inevitable.

Among the most notable examples of such a currency are Law's
bank under the Regency, the South Sea bubble, the French

assignats, and, to a certain extent, the colonial currency during
the American Revolution. It may be stated that governments
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seldom resort to such an act except in the exigencies of war-

and it always requires years for the restoration of the propel

relations between the paper and metallic currency.

History of Honey.—Money has been employed as a medium

of exchange from the very earliest historical periods. In ancient

Greece and Rome, cattle were used, from which we derive our

word pecuniary, which is from pecunia, and this from pecua,

cattle. In early Greece there was a currency of "
spits

" or

"skewers," six« of which made a drachm, or handful; they

were probably nails of iron or copper. The Lacedemonians

and others used iron money. Among the most ancient existing

specimens of coin are those of electrum, an alloy of gold with

one-fifth of silver. Gold, silver, and copper were coined by the

Greeks and Romans
;
tin was coined by Dionysius I., tyrant

of Syracuse, and Roman and British tin coins are known to

exist. Early leaden money is mentioned; a leaden stater is

preserved in the British museum-, and leaden m<mey is now

current in the Burman Empire. Nuuia Pompilius. King of

Rome about 700 B. C, made money of both wood and leather.

The Carthaginians had a kind of leather money; and the Em-

peror Frederick Barbarossa, 1158, and John the Good, King
of France, 13G0, also issued leather money. In 1574, when

the city of Leyden was besieged by the Spaniards, leather money
was used, and even quantities of pasteboard were coined in some

parts of Holland. In the loth century, money made out

of the middle bark of the mulberry tree, cut into round pieces

and stamped with the mark of the sovereign, was used in

China. Cowry shells are used in Africa, in India, and the In-

dian islands, in the place of small corns. In India cakes of tea,

in China pieces of silk, in Abyssinia salt, and in Iceland and

Newfoundland codfish, pass for money. Wampum was used

by the Indians
;
and about 1635 was the prevailing currency

among the people of Massachusetts, became a legal tender, and

was even counterfeited. About the same time corn and beans

were used, and musket balls passed for change and were a legal
34
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tender for sums under one shilling. Notched wood was once

used as a currency in England. So late as 1176, it was custom-

ary for workmen in Scotland to carry nails as money to the bake-

shop and ale-house. It is thus seen that barter being one of the

prime necessities of society, man finds, amid a variety of things,
some one or more, according to circumstances, which will serve

as the instrument of exchange.
The tendency, however, among all peoples, has been towards

the precious metals, gold and silver. These metals, though
first used by weight, were eventually coined into pieces of con-

venient and fixed values. The invention of coinage has been

attributed to the wife of Midas, though without any historical

certainty. High authority regards the Lydians, about 1200 B.

C, as the inventors; and in support of this opinion it is also

claimed that the earliest electrum coins, which undoubtedly be-

long to cities then under the dominion of the Lydian kings,
seem to be of greater antiquity than any in the entire Greek

series. By some Greek writers the invention is attributed to

Phidon, King of Argos, in the 8th century B. C.
;
but he is now

believed to have merely introduced coinage into Greece. It is

said that the native bronze coins of China, the tsien or cash,

bearing the inscription tung-pan, meaning current money, had

its origin about 1200 B. C, at the beginning of the Chan dy-

nasty. Lycurgus banished gold and silver and made the money
of Sparta of iron, $100 wortii of which required a cart and two

oxen to draw it.
*

In Rome, for nearly 500 years after its foundation, no metal

was coined but copper or brass. The ses, an, or libra, was a

pound weight of copper or .brass, stamped by the state, in the

reign of Servius Tullius (578-534 B. C). This coin, the unit

of Roman money, was originally oblong like a brick, but sub-

sequently was made round; and was cast, not struck. Before

this reign, unstamped bars of copper were used for money
Silver was first coint'd in Rome in 269 B. C, the principal coin

boinii: the denariu.-;; and "'old in 207 B. C, althouL""!! it i.s held
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that the latter did not form a part of the regular currency until

the time of Julius Ccesar. The Emperors possessed the privi-

lege of coining gold and silver, but copper could b(! coined only

by decree of the Senate.

The ancient Britons, at the invasion of Cossar, had money
of brass and iron, and it was paid by weight. During the

reign of Augu.stus, one of the native kings caused money of

gold, silver, and brass to be coined. Under the Emperor
Claudius, the Roman money took the place of the Celtic, and

continued in circulation until after the withdrawal of the Romans
in the 5th century. The earliest coins subsequently issued are

supposed to be the pennies of Ethelbert, King of Kent (560-

616). These were coarsely stamped with the king's image on

one side, and the name of either the mint-master or the city ia

which they were coined, on the other side. At this time, all

money accounts began to be expressed in pounds, shillings,

pence, and mancas or mancuses, although there was no coin but

the penny, the other denominations being only moneys of ac-

count; 30 pence made a manca, 5 pence a shilling, and 40 shil-

lings a pound. The mancas were reckoned both in gold and

silver. In King Canute's laws the distinction is made that a

mancuse was as much as a mark of silver, while a manca was

a square piece of gold valued at 30 pence. King Athelstan

(930) decreed that money should be uniform, and coined only
ill towns; and this decree mentions the fact that the clergy

shared with the king the privilege of coining.

The Norman kings continued to coin only pence, which were

of silver, and with a cross so deeply impressed that they might

easily be broken into halfpence and farthings. The word ster-

ling, to denote the standard money of England, is known to

have been used as early as during the reign of William the

Conqueror. Severe penalties were attached to the counterfeit-

ing of money by Henry I. (1108), and during his reign half-

pence were first coined. Henry II. (1154) found the money so

much debased and reduced in value, that he provided for a new
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coinage, and punished those convicted of tampei'ing with it.

Silver farthings were first coined in 1222. In 1248 it was found

that the money of the realm had been so clipped and otherwise

defaced that its real worth bore no fixed proportion to its nom-

inal value. Henry III. therefore ordered that the old coins

should be brought to the mint and exchanged for new ones,

weight for weight, thus entailing the entire loss, which was

very great, upon the nctual holders of these coins, which justly

caused great complaint. During this reign, in 125^, gold pen-

nies were first coined, which weighed y^ of a pound tower,

and passed for twenty pence. In 1219, Edward I. caused a

new coinage of halfpence and farthings to be made, and pro-

vided that the old, which were principally mere fractions cut

to suit, should no longer pass current. In 1300 he positively

prohibited the circulation of any money not of his own coinage.

In 1301 he diminished the weight of the pound sterling three

pennies, equal to one per cent. Edward III. (1335), having

exhausted his exchequer and embarrassed himself in his efforts

to conquer France, ordered (1344) that in future 266 pennies

should be made from a pound sterling; and two years subse-

quently he increased the number to 270 pennies. Shilling

pieces were first coined during the reign of Henry VII., in

1505
;
and in 1523, during the reign of Henry VIII., silver

farthings were coined for the last time. Queen Elizabeth raised

the standard of silver coin, and in 1601 coined for Ireland shil-

lings, sixpences, and threepences of a baser kind. The circu-

lation of leaden tokens issued by the tradesmen of London

was, to a great extent, stopped about the beginning of the lYth

century. James I., in 1613, debased a portion of the coin,

having coins in circulation of two qualities of fineness. James

II. (1685-8) issued coins of tin, and authorized those of gun
metal and of pewter. The first sovereigns were coined in 1489,

under Henry VII.; half, quarter, and eighth sovereigns by

Henry VIII., in 1544; and the first guinea by Charles II., in

1675.
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Up to the 18th century, England had a double monetary
standard, gold and silver; but owing to the over-valuation of

silver in France, heavy silver coins disappeared from circula-

tion, and the evil became so great that in 1774 it was declared

that silver should no longer be a legal tender, except by weight,

beyond £25. In 1816 the pound standard of silver was coined

into 66s., the relative value with gold being as 1 to 14.287.

Silver then became a legal tender for only 40 shillings. In

1792 Congress fixed the relative value of silver and gold at 1

to 15, which over-valuation of silver caused gold to be exported
in such quantities that it was impossible to maintain a gold
circulation. In 1834 the standard was changed to 1 to 16,

while with other nations it was 1 to I5j, which caused silver

to be so largely exported that in 1853 the ratio was changed
to 1 to 14.88, and silver was made a legal tender only for sums
under $5. By the coinage act of 1873, it was again changed
to 1 to 14.95. For other interesting information upon this

subject, see the American Cyclopedia, from which most of

these facts have been taken.

Money.—That by which value is estimated is called Money
Money may be defined as the measure or representative of the

value of things. It is so called from the temple of Juno

Monett, in which money was first coined at Rome. It is of

two kinds—coin and paper money. The money of a country
is called its currency, from carro, I run, on account of its

circulating throus^h the country. The coin of a countrv is

called its specie currency, and the paper money its paper

currency. Coin is metal prepared to circulate as money.
The metals used in this country are gold, silver, copper, and

nickel. Paper money consists of printed promises to pay the

bearer a certain amount, duly authorized to circulate as money
United States Money.—The present system of our currency

was established by an Act of Congress, August 8th, 1786.

It was formerly, and is still sometimes, called Federal Money,
because it was the money of the Federal Union. A plan for
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an Americau coinage was submitted to Congress in 1782, by
Robert Morris, the head of the Finance Department, though
its authorship is claimed for Gouverneur Morris. The plan

adopted was that presented by Thomas Jefferson.

The standard unit of the system is the dollar^ and the scale

was made to conform to the decimal system of notation. The

term dollar is probably of German origin, derived from thai,

signifying a dale or valley. It is supposed that they were

first coined about the year 1518, at Joachimsthal (Joachim's

valley), a mining town of Bohemia, and called Joachims-thaler,

and finally abbreviated to thaler. There are, however, several

other theories to account for the word. Some German scholar^

derive the word thaler from talent, which was used, in the

Middle Ages, to denote a pound of gold. Tooke says it is

from the Anglo-Saxon dael, a portion, being a part or portion

of a ducat. Thompson thinks that it is from the Swedish

daler, from the town Dale or Daleberg, where it was coined.

The dollar is a silver coin of Germany, Holland, Spain, Mexico,

etc., though its value is not the same in all countries. In

Spain, the coin is called dalera, the famous Spanish dollar,

which for centuries figured so conspicuously in the commerce

of the world. The Spanish dollar, called also the milled dol-

lar, from its milled edge, was taken as the basis of United

States coin and monev account.

The term dime, one-tenth of a dollar, is derived from the

French disme, meaning ten ; the term cent, one hundredth of

a dollar, from the Latin centum, a hundred ; the term mill, one

thousandth of a dollar, from the Latin niille, a thousand. The

term eagle is probably applied on account of the design on the

coin. The cent was proposed in 1782, by Robert Morris, and

was named by Thomas Jefferson three years later. It was first

coined in Vermont, in 1785, in the town of Rupert, and in the

same year by Connecticut at New Haven, and l)y New Jersey

and Massachusetts in 1786. The same year Congress authtjr-

ized the establishment of a mint, but in 17S7 they contracted
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with James Jarvis for 300 tons of cents, which were coined in

New Haven. In 1792 a national mint was finally established

under regulations which continued in force over forty years.

The cent bore the head of Washington on one side and a chain

of thirteen links on the other. The French Revolution creat-

ing a rage in America for French ideas, the image of Wash-

ington was deposed and the head of the Goddess of Liberty

took its place, the chain being also replaced by the olive wreath

of peace. French liberty was short-lived and so was the image

upon the coin. The present face, with its classic features, was

subsequently adopted, and has been but slightly changed since

its adoption.

The origin of the symbol $, has never been satisfactorily

determined. There are several theories, the most important of

which are the following: 1st. It is supposed to be a combina-

tion of U. S
, signifying United States, formed by writing the

U over the S, which became changed in course of time to its

present form 2d. It is said to bt3 a modification of the figure

8, denoting a piece of eight Reals or Testons. The dollar was

formerly called "a piece of eight," and designated by the symbol

|. 3d. It is said to be derived from the reprusentation of the

two "Pillars of Hercules," the ancient name of the opposite

promontories at the Straits of Gibraltar. These were repre-

sented by two vertical lines connected with a scroll or label,

and the coins containing this mark were called pillar dollars

4th. It is said to be a combination of HS., the mark of the

Roman money unit. This symbol was prefixed to the numer-

als representing any sum, as the dollar mark is employed by
us. The symbol HS. is a contraction of II., two and Semis, half,

meaning two and a half; being equivalent to the word Sester-

tius, which was equal to two and one-half nwrn^u'. The Ses-

terce was the Roman money unit, as the dollar is ours. 5th.

It is said to be a combination of P and S., from peso duro, or

peso fuerte, meaning "hard dollar." In Spanish accounts

this is always abbreviated by writing an S over a.P, and plac-
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ing the sign after the sum, as is also customary among the

Portuguese.

The coina are of gold, silver, bronze, and nickel The gold

coins are the doable eagle, eagle, half-eagle, quaHer-eagle, three

dollar, and one dollar. Fifty-dollar, half-dollar, and quarter-

dollar pieces are also coined, but are not legal circulation. The

silver coins are the dollar, half-dollar, quarter-dollar, dime,

half-dime, and three-cent piece. The bronze coins are the two-

cent piece and the cent. The half-cent and cent of pure copper
are not now coined. The mill has never been a coin, it is

merely a convenient name for the tenth part of a cent. The

nickel coins are the five-cent and three-cent pieces.

The gold and silver coins consist of nine parts pure metal

and one part alloy, except the three-cent piece, which is one-

fourth alloy. The alloy of the silver coin is pure copper ;
that

of the gold coin is copper, or copper and silver, the silver not

to exceed one-tenth of the whole alloy. The nickel coins con-

tain one part nickel and three parts copper. The bronze coins

contain 95 per cent, of copper and 5 per cent, of tin and zinc.

The eagle weighs 258 grains, the other gold coins in proportion ;

the silver trade dollar, intended for commerce with China and

Japan, weighs 420 grains ;
the half-dollar, 192.9 grains, and the

other silver coins in proportion ;
the nickel five-cent piece weighs

5 grams (77. 16 grains nearly), and the three-cent piece weighs
30 grains ;

the bronze cent weighs 48 grains. The half-dollar,

being half the weight of the five-franc piece of France, Bel-

gium, and Switzerland, of the five-lire piece of Italy, the five-

peseta coin of Spain, the five-drachma coin of Greece, and being

equal in weight to the silver florin of Austria, is a step towards

an international coinage.

Previous to the establishment of the decimal currency, we

employed the currency of England, that is, pounds, shillings,

and pence. Several of the States still use shillings and pence,

though not with the same values. The difference in the num-
ber of shillings required for a dollar in the different States ia
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owing' to a depreciation in the paper money issued bj the

colonies. This depreciation was so great that in 1749, £1100

currency was only equal to £100 sterling. Soon after this

Massachusetts receiving a remittance from England, called in

her depreciated money at the rate of a Spanish dollar to 45

shillings of the paper currency, and the Legislature also passed
an act fixing the par exchange between Massachusetts and Eng-
land at £133g- currency to £100 sterling, and 6 shillings to the

Spanish dollar, A similar depreciation of the paper money es-

tablished the currencies of the other colonies. From this diver-

sity in the colonial currencies it happens that the Spanish real

of one-eighth of a dollar, was called in New England ninepence ;

in New York, one shilling ; in Pennsylvania, elevenpence or

a levy.

The earliest coinage in America was made in 1612, at the

Somers Islands, now called Bermudas. The coin was of brass,

with the legend "Sommer Island," and "a hogge on one side,

in memory of the abundance of hogges which were found on

their first landing." In 1645, the assembly of Virginia pro-

vided for a copper coinage, but the law was never executed

The earliest colonial coinage was in Massachusetts, under an

act passed May 27, 1652, which established a " mint howse" at

Boston. The first coins were found to be too plain to prevent^

"washing and clipping," and were afterwards stamped with a

figure of a tree, whence they were called "pine-tree shillings."

In 1662 the assembly of Maryland passed an act "for the

setting up of a mint within the province ;" but it seems nevei

to have been established. George I. attempted to introduce

into the colonies, coins made of Bath metal, or pinchbeck ;
but

this money was rejected by them. From 1778 to 1787, the

power of coinage was exercised both by the confederation in

Congress and by several of the individual states. The mint

established in 1792 continued in operation under nearly the

same regulations up to 1837, since which time numerous

changes have been made, in both the value and the coniposi-
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tion of the coins. In the United States, the right of coinage
is vested by the Constitution in Congi'ess, and prohibited to

the several states
;

and yet individuals are left free to coin

money, provided that the coins be not in "resemblance or

similitude'' of the gold or silver coins issued from the mint.

Large amounts of private gold coins have been struck and

circulated in different parts of the country. In the case of

copper coins, however, the offering or receiving of any other

copper coins than the cent and half-cent is prohibited by fine

and forfeiture.

English Money.—English, or Sterling Money, is the legal

currency of England. The scale, is irregular, ascending by 4,

12, 20. The term Sterling is supposed to be derived from

Eaderling, the popular name of the Baltic and German traders

who visited London in the Middle Ages. In what manner it

came to be so applied is not certainly known. Camden says
from the employment of German artists in coining. It is gen-

erally supposed that,these traders being called Easterlings, their

money would naturally be called Easterling money, which was

finally changed, by use, to Sterling money. The silver penny
was first called Easterling. The unit is the pound, represented

by the sovereign, nud the £1 bank note.

The term pound, as a measure of value, is derived from pound,

as a measure of weight, from the fact that anciently 240 pence
were equal to a pound in weight, the term originally signifying

a weight and not a value of money. The penny was formerly

a silver piece, first coined by the Saxons. Tlie term farthing
is from four things. Previous to the time of Edward I., the

penny was struck with a cross so deeply sunk in it, that it could

be easily broken into halves and quarters, whence the names

half penny and/o»r things or farthings. Edward I. reduced

the penny to a fixed standard, fixing its weight at the thirtieth

part of an ounce. It afterward suffered successive diminutions

until the reign of Elizabeth, when its value was fixed at the

sixty-second part of an ounce of silver, which standard is still
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observed. The shilling, among the ancient Saxons, was only-

five pence. It subsequently underwent many alterations, con-

taining sometimes IG pence, and sometimes 20 pence. Its pre-

sent value was fixed during the reign of Edward I. A coin

of the same name is found in several other countries. The

symbols £., s., d., qr., are the initials of the Latin words libra,

solidus, denarius, and quadrans ; signifying respectively pound,

shilling, penny, and quarter. The old/, the original abbrevia-

tion for shillings, was formerly written between shillings and

pence; thus 7s. 6d. was written T/G. The /"has since been

changed into /, and shillings and pence are sometimes written

thus, 7/6.

The English gold coins are the 5 sovereign piece, the double-

sovereign, the sovereign and half-sovereign, the guinea and

half-guinea. The Sovereign, equal to 20 shillings, represents
the pound sterling. Its legal value in our currency is $4.8665.

It is the standard gold coin. The Guinea, equal to 21 shillings,

was first coined during the reign of Charles II., in the year

1662, of gold brought from Guinea, and hence its name. The

guinea and half-guinea are no longer coined, though some of

them are still in circulation. The silver coins are the crown,
the half-croxon, the florin, the shilling, the sixpenny, four-

jyenny, and threepenny piece. The Crown is an old English

coin, stamped with the figure of a crown, whence its name.

Its value is 5 shillings sterling. The copper coins are the

peiiny, half-penny, and farthing. The groat, worth 4 -pence, is

often mentioned.

The noble, the angel, and the mark, are old gold coins no

longer in use. The Noble is an old coin of the Middle Ages,
coined in the reign of Edward III. Its value is 6 shillings

8 pence. The Angel is an old coin valued at 10 shillings. It

was impressed with the figure of an angel, in commemoration

of a saying of Pope Gregory I., that the pagan Angli, or Eng-

lish, were so beautiful, that were they Christians, they would

be angels. The Mark is an old coin, current in England and
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Scotland, valued at 13 shillings 4 pence. A piece of money

bearing this name, valued at 1 shilling 4 pence, is at present

used in Hamburg.
The standard for gold coins is 22 carats fine, that is, 11 parts

pure gold and one part alloy. This makes the English standard

Y^j alloy, while the standard of the United States is J^ alloy.

The standard for silver is 37 parts pure silver and 3 parts alloy,

hence the silver coins are f J pure and -^^ copper. Pence and

half-pence are made of pure copper. The sovereign weighs
123.274 grains; the shilling weighs 87.27 grains; the penny

weighs 240 grains, or ^ ounce Troy.

The currency of Canada is the same as that of the United

States, the table and denominations also being the same. The

decimal currency was adopted in 1858, the Act taking effect in

1859, previous to which their currency was the same as the

English. The coins consist of silver and copper. The silver

coins are the fifty-cent piece, the twenty-five-cent piece, the

shilling or twenty-cent piece, the dime, and the half-dime.

The copper coin is the cent. The shilling equals about 19

cents of United States money; the values of the other silver

coins are proportional. The silver coins consist of 37 parts

silver to 3 of copper, the same as the English silver coins.

There is no gold coinage, the British and American gold coins

being a legal tender.

French Money.—The French system, like our own, is founded

apon the decimal notation. The unit is the franc, Avhose

faluo is fixed, by a late Act of Congress, at 19.3 cents. The

franc is divided into tenths and hundredths, called respectively

decimes and centimes. The decinie, like our dime, is not used

in business calculations, but is expressed by centimes. The

gold and silver coins are nine-tenths pure metal.

German Money.—A new and uniform system of coinage has

been adopted by the New German Empire. The unit is the

reichsmirk, worth 23.85 cents. A pound of gold, .9 pure, is

divided into 139^ c )iiis, and the; tR'itli pirt of th's con is ealljd

a mark, and this is subilividcil into 100 pfeani'/c.
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CHAPTER Y.

MEASURES OF TIME.

TIME,
in the sense here used, is regarded as a limited

portion of duration, measured by certain conventional or

natural periods. It is a definite portion of absolute Time,

which is duration without beginning or end. The idea of Time

in the absolute, is a grand intuition, like Space ; Time, here

considered, is known by experience and judgment.
Measures of Time were also originally derived from nature.

The simplest unit of time, the day,
" nature supplies ready

made." The next simplest period, the month, or mooneth, is

also presented to us by the changes of the moon constituting a

lunation. For larger divisions than these, the phenomena of

the seasons and the chief events from time to time occurring,

have been used by early and uncivilized races. Among the

Egyptians the rising of the Nile served as a point from which

to reckon time. The New Zealanders were found to begin their

year from the rising of the Pleiades above the sea. The

migration of birds indicated the season to the Greeks and other

nations. The Hottentot denoted periods by the number of

moons before or after the ripening of his chief article of food.

Barrow states that the Kaffir chronology is kept by the moon,
and is registered by notches on sticks—the death of a favorite

chief, or the gaining of a victory, serving for a new era. The

peasantry of England refer to occurrences as "before sheep-

shearing;" and in this country we often hear "harvest time,"
•' after harvest," etc., used as dates of reckoning. It is, there-

fore, manifest that the more or less equal periods perceived in

I
541 )
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Nature gave the first units of the measure of time, as in the

cases already considered.

Historical.—As society progressed in civilization, the neces-

sity of smaller and more precise units became apparent, which

at last led to the adoption of some regular system adapted to

the purposes of civil life. Such a system is called a Calendar,

from the Latin calare, to call. In the early days of Rome it

was the custom of the Pontiff to call the people together on

the first day of each month, to apprise them of the days that

were to be kept sacred during the month. Hence dies calendse,

the calends or first days of the different months.

The present calendars are derived from the Romans. Rom-
ulus is supposed to have first undertaken to divide the year in

such a manner, that certain epochs should return periodically

after the revolution of the sun
;
but the knowledge of astron-

omy was not then sufficiently advanced to allow this to be done

with much precision. lie placed the beginning of the year in

the spring, and divided it into ten months,—March, April,

May, June, Quintilis, Sextilis, September, Octolier, November,
and December. March, May, Quintilis, and October, contained

31 days each ; the other six contained only thirty. The names

Quintilis and Sextilis remained in the calendar till the end of

the republic, when they were changed into July and August;
the former in honor of Julius Caesar, and the latter of Augustus.
The Roman month was divided into three periods by the

Calends, the Nones, and the Ides. The Calends were invaria-

bly placed at the beginning of the month
;
the Ides,?ii the raid-

tile of the month, on the 13th or 15th; and the Nones (novem,

nine) were the ninth day before the Ides, counting inclusively.

From these three terms the days were counted backward in the

following manner: those days comprised between the calends

and the nones were denominated days before the nones; those

between the nones and the \des, dai/s be/ore the ides ; a,nd

those from the ides to the end of the month, days before the

calends. Hence the phrases pridie calendas, tertio calendas,
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etc., meaning the second day before the calends, or last day of

the month, the third day before the calends, or last but one of

the month (the calends being included in the reckoning), and so

on. In the months of March, May, July, and October, the

ides fell on the 15th, and the nones, consequently, on the Yth.

In all other months the ides fell on the 13th, and the nones,

consequently, on the 5th. The number of days receiving their

denomination from the calends, depended on the number of

days in the month, and the day on which the ides fell. For

example, if the month had thirty-one days and the ides fell on

the 13th (as in January, August, and December), there would

remain eighteen days after the ides, which, added to the first

of the following month, made nineteen days of calends. Ilence

Jonuary 14th was styled the nineteenth day before the calends

of February, and so on.

The year of Romulus, according to the mythical history,

contained only 304 days. Numa, it is said, added two months;

January to the beginning of the year, and February to the

end. About the year 452 B. C. this arrangement was changed

by the Decemvirs, who placed February' after January; since

that time the order of the months has remained undisturbed.

In Numa's year the months consisted of 29 and 30 days alter-

nately, to correspond with the synodic revolution of the moon.

The year would therefore consist of 354 days; but one day
was added to make the number odd, as being more lucky. In

order to produce a correspondence with the solar year, Numa
ordered an intercalary month to be inserted every second year

between the 23d and 24th of F'ebruary, consisting alternately of

22 and 23 days. Had this regulation been strictly adhered to,

the mean length of the year would have been 3G5^ days, and

the months would have continued for a long time to correspond
with the same seasons. But a discretionary power over the

intercalary month was exercised by the pontiffs, for the purpose
of hastening or retarding the days of election of magistrates ;

and thus the Roman calendar continued in a state of unccr-
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tainty and confusion till the time of Julius Caesar, when the

civil equinox differed from the astronomical by three months.

Under the advice of the astronomer Sosigenes, Caesar abol-

ished the lunar year, and regulated the civil year entirely by
the sun. He decreed that the common year should consist of

365 days; but that every fourth year should contain 366. In

distributing the days among the different months, he ordered

that the odd months should contain each 31 days and the even

months 30
; excepting February, which in common years was

to contain only 29 days, but every fourth year 30 days. This

natural and convenient arrangement was interrupted to gratify

the frivolous vanity of Augustus, by giving August, the month

named after him, an equal number of days with July, which

was named after Julius Caesar. The intercalary day which

occurred every fourth year was inserted between the 24th and

25th of February. According to the peculiar and awkward
manner of reckoning adopted by the Romans, the 24th of Feb-

ruary was called the fith before the calends of March, sexto cal-

endar. In the intercalary year this day was repeated, and

called bis-sexto calendas; whence the term bissextile. The cor-

responding English term leap year, appears less correct, as it

seems to imply that a day was leapt over instead of being
thrust in. It may be remarked that in the ecclesiastical calen-

dar, the intercalary day is still inserted between the 24th and

25th of February.
The Julian year consisted of Sdd^ days, and consequently

differed in excess by 11 minutes, 10.35 seconds from the true

solar year, which consists of 365 days, 5 hours, 48 minutes,

49.7 seconds. In consequence of this difference the astrono-

mical equinox, in the course of a few centuries, sensibly fell

back towards the beginning of the year. In the time of Julius

Csesar it corresponded with the 25th of March; in the 16th

century it had retrograded to the 11th. The correction of this

error was one of the purposes sought to be obtained by the

reformation of the calendar effected by Pope Gregory XIII.
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in 1582. By suppressing 10 days in the calendar, Gregory
restored the equinox to the 21st of March, the day on whicli it

fell at the time of the Council of Nice, in 325. In order that

the same inconvenience might be prevented in the future, he

ordered the intercalation, which took place every fourth year,

to be omitted in years ending centuries; excepting on the

400th, and the years which are multiples of 400. By this

adjustment of the calendar the difference between a civil and a

solar year will amount to a day in about 3,8fi0 years.

The Gregorian calendar was received immediately or shortly

after its promulgation by nearly all the Roman Catholic coun-

tries of Europe. The Protestant states of Germany and the

kingdom of Denmark adhered to the Julian calendar until

1700; and in England the alteration was successfully oi)posed

by popular prejudices until 1752. In that year the Julian

calendar, or old f-fyle, as it was called, was formally abolished

by the Act of Parliament, and the date used in all public

transactions rendered coincident with that followed in all

European countries, by enacting that the day following the 2d

of September of the year 1752 should be called the 14th of that

month. When the alteration was made by Gregory it was

only necessary to drop 10 days; the year 1700 having inter-

vened, which was a common year in the Gregorian but a leap

year in the Julian calendar, it was now necessary to drop 11

days. The old style is still adhered to in Russia and the

countries belonging to the communion of the Greek Church;
the difference of date in the present century amounts to 12

days.

A new reform of the calendar was attempted in France

during the period of the Revolution. The beginning of the

year was fixed at the autumnal equinox, which nearly coincided

with the foundation of the republic. The names of the ancient

months were abolished, and others sul)stituted having reference

to agricultural labors, or the state of nature in different seasons

of the year. But the change was found tu he iiiiMinvcnicnt and

impracticable, and after a few vcars was forinallv al)andonp'']

35
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Beginning of the Year.—There has been great diversity

among different nations in the time of beginning the year.

The ancient Egyptians, Chaldeans, Persians, Syrians, Phoeni-

cians, Carthaginians, each began their year at the autumnal

equinox, about the 22d of September. The Jews began their

civil year at the same time, but their ecclesiastical year dated

from the vernal equinox, about March 22d. Among the

Greeks, until 432 B. C
,
when Meton introduced the cycle

named after him, the year comnienT:;ed at the winter solstice,

about December 22d; and subsequently at the summer solstice,

about the 22d of June. The Roman year from the time of

Numa began at the winter solstice. Among the Latin Chris-

tian nations there were seven different dates for the beginning

of the year: March 1; January 1; December 25; March 25

(beginning the year more than nine months sooner than we

do, called the Pisan calculation) ;
March 25 (beginning nearly

three months later than we do, called the Florentine calcula-

tion); at Easter; and on January 1 (one year in advance of

us). In France the year began in general at March 1, under

the Merovingians; at December 25, under the Carlovingians;

and at Easter under the Capetians. By edict of Charles IX.,

in 1564, the beginning of the year was ordered at January 1.

In England, from the 14th century till the change of style in

1752, the legal and ecclesiastical year began at March 25, the

day of the Annunciation, though it was not uncommon to

reckon it in writing from January 1, the day of the circumcision.

After the change, events which had occurred before March 25

in the old legal year, would by the new arrangement, be

reckoned in the next subsequent year. Thus the revolution of

1688 occurred in February of that legal year, or, as we would

now say, in February, 1689; and it was at one time customary

to write the date thus,—February, 168f.

The ancient northern nations of Europe began their year from

the winter solstice. In the era of Constantinople, which was

ID use in the Byzantine Empire, and in Russia till the time of
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Peter the Great, the civil year began with September 1, and

the ecclesiastical sometimes with March 21, and sometimes with

April ] The beginning of the Mohammedan year, which is

iiiuar, is not at any fixed time, but retrogrades through the dif-

ferent seasons of the solar year.' The later Jewish year is

lunar, but by the intercalation of a thirteenth mouth, seven times

in a cycle of nineteen years, is brought into harmony with the

solar periods ;
it begins at the autumnal equinox. Among most

of the peoples of the East Indies the year is lunar, and begins
with the first quarter of the moon the nearest to the beginning
of December. Among the Peruvians, the year began at the

winter solstice, and among the Mexicans at the vernal equinox.
The year of the former was lunar, and was divided into four

equal parts, bearing the names of their four principal festivals,

instituted in honor of their four divinities allegorical of the sea

sons. The Mexicans had a year of 360 days and 5 supple-

mentary days. They divided it into 18 months of 20 days and

had a leap year.

Lunar Year.—Though the return of the seasons obviously

depends on the motion of the sun, or rather of the earth in its

orbit, some nations have chosen to regulate their civil year by
the motions of the moon; and many others have formed luni-

solar years, by combining periods determined by the revolu-

tion of both bodies. The proper lunar year consists of twelve

lunar months, or lunations, and consequently contains only 354

days; its commencement, therefore, anticipates that of the solar

year by upwards of eleven days, and passes through the whole

circle of the seasons in about 34 lunar years. The inconve-

nience attending this circumstance has been so universally per-

ceived, that, excepting the modern Jews and Mohammedans,
almost all nations which have regulated their months by the

moon, have employed some method of intercalation for the pur-

pose of retaining the beginning of the year at nearly the same

place in the seasons. These methods are founded on certain hini-

sohir periods or cycles, which were establisiicd in tlic most
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ancient times, and which, with other relics of a barbarous age,

are still preserved in our ecclesiastical calendars.

Ecclesiastical Calendars.—The adaptation of the civil to the

solar year is attended with no difficulty; but the church calen-

dar for regulating the movable feasts imposes conditions less

easily satisfied. The early Christians borrowed a portion of

their ritual from the Jews, whose year was luni-solar. Easter,

the principal Christian festival, in imitation of the Jewish

passover, was celebrated about the time of the full moon.

Differences of opinion, and consequently disputations, soon

arose as to the proper day on which the celebration should be

held. In order to put an end to an unseemly contention, the

Council of Nice laid down a specific rule that Easter should

always be celebrated on the Sunday which immediately follows

the full moon that happens upon, or next after, the day of the

vernal equinox. In order to determine Easter according to

this rule for any particular year, it is necessary to reconcile

three periods; namely, the week, the lunar month, and the

solar year. To find the day of the week on which any given

day of the year falls, it is necessary to know on what day of

the week the year began. In the Julian calendar this was

easily found by means of a short period or cycle of 28 years,

after which the year begins with the same day of the week.

In the Gregorian calendar this order is interrupted by the

omission of the intercalation in the last year of the century.

But to render any calculation unnecessary, a table is given in

the prayer-books, showing the correspondence of the days of

the year and the week for the current century. The connection

of the lunar month with the solar year is an ancient problem,

for the resolution of which the Greeks invented cycles or

periods, which remained in use with some modifications till

the time of the Gregorian reformation. The author of the

Gregorian calendar, Luigi Lilio Ghiraldi, or, as he is frequently

called, Aloysius Lilius, employed for the same purpose a set of

numbers called Epacts. It is to be desired that this conipli-
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cated system of rules and tables were rendered unnecessary by

abolishing the use of the lunar month, and causing Easter to

fall invariably on the same Sunday of a calendar month; for

example, the first or second Sunday in April.

The Ileasures.—Measures of Time are definite portions of

duration, fixed by the revolutions of the earth on its axis and

around the sun. The unit of time is the day, subdivided into

hours, minutes, and seconds. The other divisions of time,

arising from the day, are weeks, months, and years. The

length of the day is determined by the revolution of the

earth on its axis. The Sidereal Day is the exact time of the

revolution of ihe earth on its axis. The Solar Day is the time

of the apparent revolution of the sun around the earth. The

Astronomical Day is the solar day, beginning and ending

at noon. The Civil Day is the average length of all the solar

days of the year; it begins at 12 o'clock midnight, and con-

sists of two periods of 12 hours each.

The second and minute are parts of an hour, corresponding

to the parts of a degree in Circular Measure. Hour is derived

from the Latin hora, originally a definite space of time fixed

by natural laws
;
a day, derived from the Saxon daeg, is the

time of the revolution of the earth upon its axis; a week is a

period of uncertain origin, but which has been used from time

immemorial in Eastern countries; a month, from monadh, is

the time of one revolution of the moon around the earth; a

year, from Saxon gear, is the time of the. earth's revolution

around the sun; century comes from the Latin centuria, a

collection of a hundred things.

The week is supposed, by some writers, to be derived from

a tradition of the creation
; by others, to have been suggested

by the phases of the moon; while others refer its origin to the

seven planets known in ancient times. This opinion explains

the circumstance that the days of the week have been univer-

sally named after the planets, in a particular order. In the

ancient Egyptian astronomy, the order of the "planets," m
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respect of distauce from the earth, beginning with the most

remote, was Saturn, Jupiter, Mars, the Sun, Venus, Mercury,
the Moon. The day was divided into 24 hours, and each

successive hour consecrated to a particular planet in the order

just stated; and each day was named after the planet to which

its first hour was consecrated. Supposing the first hour con-

secrated to Saturn, he would also have the 8th, 15th, and 22d

hours. The 23d then would fall to Jupiter, the 24th to Mars,

the 1st of the following day to the Sun, from which it would

take its name. By proceeding in the same manner it is found

that the third day would fall to the Moon, the fourth day to

Mars, the fifth to Mercury, the sixth to Jupiter, the seventh to

Venus, and, the cycle being completed, the eighth to Saturn

again, and so continue in the same order. The Egyptians are

said to have begun their week with Saturday. The Saxons

seem to have borrowed the week from some Eastern nation,

substituting the names of their own divinities for those of

the gods of Greece

January is derived from Janus, the old Latin god of the

sun and the year, to whom this month was held sacred.

February is horn fehrua, the Roman festival of propitiation, cel-

ebrated on the 15th of this month. January and February were

added to the Roman calendar by Numa, Romulus Laving pre-

viously divided the year into 10 months. March is from 3Iars,

the god of war and reputed father of Romulus. It was the

first month of the .Roman calendar. April is probably from

the Latin aperire, to open, from the opening of the buds, or

the bosom of the earth in producing vegetation. May is from

Maia, the mother of Mercury, to whom the Romans offered

sa,crifices on the first day of this month. June is probably

from Juno, the sister and wife of Jupiter. July was named

by Mark Antony after Julius Caesar, who was born in this

month. It was previously called Quintilis. August was

named after Augustus Caesar. It was formerly called Sextilis,

the sixth month. September, October, November, December,
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are respectively named from the Latin numerals, septem, octo,

novem, decern.

Adjustment of the Calendar.—A True or Solar year is the

exact time in which the earth revolves around the sun. It con-

sists of 3G5 days 5 hours 48 minutes 49.7 seconds. Now, since

it is inconvenient to reckon the fractional part of a day each

year, it is necessary to arrange a correct calendar in which each

year may have a whole number of days. This is done by caus-

ing some years to consist of 365 days and others of 3G6 days.

The former are called common years; the latter, Bissextile or

Leap years.

The calendar is reckoned according to the following rule :—
Every year that is divisible by 4, except the centennial, and

every centennial year divisible by 400, is a leap year ; all the

other years are common years. The centennial years are the

hundredth years, or those which, when expressed in figures, end

in two ciphers. The reason for this rule will now be ex-

plained.

If we reckon 365 days as 1 year, the time lost in the calen-

dar in one year is 5 hours 48 minutes 49.7 seconds, and in 4

years is 23 hours 15 minutes 18.8 seconds, that is, one day,

lacking only 44 minutes 4L2 seconds; hence the first error can

be corrected by adding one day every four years, making the

year to consist of 366 days.

If every fourth year be reckoned as leap year, since we add

44 minutes etc. too much, the time gained in the calendar in

4 years is 44 minutes 4L2 seconds, and in 100 years it will 1)6

IS hours 37 minutes 10 seconds, that is, one day lacking 5

hours 22 minutes 50 seconds; hence the second error may be

corrected by deducting one day from each centennial leap year,

thus calling each centennial a common year of 365 days.

Again, if every centennial year be reckoned as a common

year, since we do not add enough, the time lost in 100 years

will be 5 hours 22 minutes 50 seconds, and in 400 years it will

be 21 hours 31 minutes and 20 seconds; hence the time lost in
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400 years will be 1 day lacking 2 hours 28 minutes 40 seconds,
and this error may be rectified by making every fourth cen-

tennial year a leap year. In the same way we may make the

calendar correct for any number of years.
The Gregorian method of intercalation thus gives 97 inter-

calations in 400 years; consequently 400 years contain 146097

(lays, and the mean length of the Gregorian year is 365 days
5 hours 49 minutes 12 seconds; exceeding the true solar year
l)y 22.3 seconds

;
an error which amounts to one day iu about

3866 years.

If an astronomer were required, without any reference to

established usages, to give a rule for intercalation by which the

civil year, while it always coincides with the commencement of

a day, should deviate the least possible from the same instant

of the solar year, he would proceed as follows: The fraction

by which the solar year exceeds 365 days is .2422414, which,
converted into a continued fraction, gives the following series

of approximations,—! ^V, ^%, iVr- iWi.-. -Mt Of these the

first gives an intercalation of 1 day in 4 years, which supposes
the year to be 365^ days. The second gives 7 intercalations in

29 years, and supposes the length of the year to be 365 days
5 hours 47 minutes 35 seconds, which is somewhat too small
The third fraction, J^, is remarkable as giving a year which
difiers in excess from the true solar by 15.38 seconds, so that

by intercalating 8 times in 33 years, or 7 times successively
every fourth year, and once at the end of the fifth year, the

difference between the civil and solar years would only accu-

mulate to a day in about 5600 years ;
while in the Gregorian

calendar the error amounts to a day in about 3866 years. The
modern Persians are said, but not on very good authority, to

intercalate in this manner. Nevertheless the Gregorian rule

has the advantage that leap year is always readily distinguished.

Daij of the Week.—There is a simple method of finding the

day of the week upon which any year begins, and nl^^o the dav
of tnc week upon which any event has occurred, which we
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will explain. Take the first seven letters of the alphabet, A,

B, C, D, E, F, G, A representing the 1st of January, B the

2d, C the 3d, etc., A again the 8th, B the 9th, and so on

through the year. Now, one of these letters will stand for

Sunday, and this letter is called the Suyiday or Dominical

Letter. Thus, if January begins on Sunday, A will be the

dominical letter for that year; if January begins on Monday,
the first Sunday will be the 1th

;
hence G, the tth letter, will

be the dominical letter. In leap year we have two dominical

letters, one for January and February, and the next preceding

for the I'emainder of the year.

We find the dominical letter for any year according to the

Julian, or Old Style, by the following rule: To the given year

add one-fourth of itself, plus 4, and divide the sum by 7. //
there is no remainder, the dominical letter is G ; if I remains,

F; and so on in reverse order. In leap year the letter thus

found will be the dominical letter for the last ten months, and

the next following letter for the first two months. Having
the dominical letter, we can easily find the day on which the

year begins.

When the year is reckoned according to the New Style, we

find the dominical letter by the following rule: Divide the

number of the century by 4, subtract the remainder from 3,

add twice this remainder to the odd years plus \ of the odd

years, and divide the sum by 1. If there is no remainder,

the dominical letter is G ; if I remains it is F, etc.

Having found the day of the week on which January begins

in any year, we may find on what day each month commences

by the following couplet:
At Dover Dwelt George Brown Esquire,

Good Captain French and David Friar.

The initial letters of the several words indicate the months in

their order, the first word the first month, the second word the

second month, etc. Now, if January begins on Sunday, D,

the letter for Februarv, being the fourth of the series, indicates

24
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that February begins on the fourth day of the week, or

Wednesday, etc. In leap year, the months after February

come in one day later.

The method may be illustrated by the following example:

Upon what day of the week did the battle of Bunker Hill

occur, June 17, 1775? Dividing 17, the number of the century,

by 4, we have a remainder of 1
; subtracting this from 3 and

multiplying by 2 we have 4
;

4 plus 75, plus ^ of 75, omitting

the fraction, gives 97, which divided by 7 gives a remainder

of 6
;
hence the dominical letter is 6 before G, or A. Therefore

the 1st day of January was Sunday. Now, by the couplet, the

first day of June is E
;
and as A is the dominical letter, June

1st was ou Thursday, and the 17th was on Saturday.

In closing this chapter, we call attention to a simple point upon
which there has been some popular misapprehension— that is,

the manner of reckoning the centuries. The centuries are num-

bered from the beginning of the Christian era. Thus, all events

transpiring from the beginning of this era until the end of the

first hundred years are reckoned as belonging to the first cen-

tury ;
all events between the end of the 100th year and the end of

the 200th year, are reckoned in the second century, etc. It is

thus seen that the 18th century closed with the end of the year

1800, and the 19th century commenced at the beginning of the

year 1801.



CHAPTER VI.

THE METRIC SYSTEM.

1^
HE Old System of weights and measures was born of ne-

cessity and developed by chance. Some method of meas-

uring quantity must have been coeval with the race, being a

necessity of man as a social being; and the earliest systems
were gradually enlarged and improved as man advanced in civ-

ilization. Originating by chance or circumstances, however,
rather than by science, they lacked symmetry and precision,

were difficult to learn and inconvenient to apply.

The two principal characteristics of a system of weights
and measures are the units and their scale of relations. The
essentials are that the units should be precise and the scale

regular. Neither of these conditions exists in the old system.
The earliest of measures were derived from variable objects in

nature, and the scales of relations are so capricious as to defy
an attempt to account for their origin. No two tables have the

same scale, and seldom have more than two units of a scale the

same relation.

The units of the old system derived from natural objects, and

v/ithout any scientific considerations, were necessarily uncer-

tain. Th.Q foot, among different nations, would vary even more

than the size of their real feet, and the same lack of precision

would belong to all other measures. But the scale of relations,

arising from accidental circumstances, and being controlled by
no scientific principle, was, if possible, even more irregular.

About thirty different numbers are used in the ordinary tables

of the United States and England ;
and these are arranged

( 555 )
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without any regard to convenience or law. Such is the system
of weights and measures that we have been required to learn

and apply to the business transactions of life.

Science found the old system in the condition described, and
endeavored to reform it. It established the units upon scien-

tific principles, and thus gave it precision. The yard, which

at one time was the length of the king's arm, was fixed by the

vibrations of the pendulum, and from it all other units of meas-

ure and weight were derived. But though science could give
exactness to the old system, it could not impart to it simplicity
and regularity. The confusion was too great even for the

touch of science to reduce to order. There was only one way
in which such a reform could be accomplished, and that was to

throw away the old system and construct a new one. This was

done, and the result is the Metric System.

History.—This system was suggested as long ago as 1528,

by Jean Fernal, a physician of Henry II., of France
;
but the

suggestion did not take a practical turn until 1790, when Prince

Talleyrand distributed among the members of the Constituent

Assembly of France a proposal, founded upon the excessive

diversity and confusion of the weights and measures then pre-

vailing all over that country, for the formation of a new sys-
tem upon the principle of a single and universal standard.

A committee of the Academy of Sciences, consisting of five

of the most eminent mathematicians of Europe,—Borda, La-

grange, Laplace, Monge, and Condorcet,—was subsequently

appointed, under a decree of the Constituent Assembly, to

report upon the selection of a natural standard; and the com-

mittee proposed in its report that the ten-millionth part of

the quarter of the meridian of Paris should be taken as the

standard unit of lineal measure.

Delambre and Mechain were appointed to measure an arc

of the meridian between Dunkirk and Barcelona, as Cassini

had been appointed in 1GG9. They commenced their labors at

the most agitated period of the French Revolution. At every
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station of their progress in the field-survey, they were arrested

by the suspicions and alarms of the people, who took them for

spies or engineers of the invading enemies of France. The

result was a wonderful approximation to the true length, and

one in the highest degree
"
creditable to the French astrono-

mers and geometricians, who carried on their operations under

every difficulty and at the hazard of their lives, in the midst

of the greatest political convulsion of modern times."

The arc of the meridian extending from Dunkirk to Barcelona,

comprising about 10° of latitude, was measured trigonometri-

cally and compared with the arc measured by Bouguer and

La Condamine in Peru in 1^36; and the length of the quarter

of the meridian, or the distance from the Equator to the Pole,

was calculated. This length was divided into ten million

equal parts, and one of these parts was taken for the unit

of length and called a metre, from the Greek word /uerpov, a

measure. The distance was measured in terms of the toise, or

old fathom (six-foot) measure of France, which was used as

the measurement of the base lines; and its ten-millionth

part, or the Metre, was determined to be 443.296 lines, the

line being j\^ of a foot. It appears thus that four metres

would exceed two toises by the 19th part of a toise, very

nearly; and the following process of constructing the metre

was adopted. Nineteen pieces were made as nearly as possi-

ble equal to each other, so that their aggregate would be a

toise
; upon examination it was found that one had almost

exactly the required length. This piece, together with the two

toises that had served for the base measurements, was placed

in the comparator and compared with four single metre bars

abutted together, which were similarly compared with each

other, and adjusted by grinding and polishing their ends until

they had the desired length. These bars were, like the toises,

of iron; one of them was chosen for the French standard, from

which the platinum metre of the archives, which is the legal

standard of France, was copied. Another of these original
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metres was brought to the United States and has served aa

the standard for the geodesy of the coast survey, and for the

construction of a metric standard for this country.

If the arc of the meridian is calculated from the result of

French researches, the metre itself is equal, in English meas-

urement, to 39.37079 inches; and multiplying this length by
ten millions, the length of the quadrant of the meridian when

converted into feet, will be 32,808,992 feet. Sir John Herschel

estimates the length of the quadrant of the meridian at

32,813,000 feet; so that, according to his calculation, there is

a difference between the French and the new estimate of the

quadrant of 4008 feet, and therefore the French length of the

quadrant is
-g-i-gT

^°° short, and the metre is ^-ks °^ ^'^ inch

less than the length of the ten-millionth part of the quadrant.

This error of ^^^ of an inch in the determination of the

metre, however, supposing it possible to establish it absolutely,

does not make the metric system less complete or useful; but

is more than counterbalanced by the extreme simplicity, sym-

metry, and convenience of the system. Professor Bessel ob-

served with respect to the mfetre, that in the measurement of a

length between two points on the surface of the earth, there is

no advantage at all in proving the relation of the measured dis-

tance to a quadrant of the meridian. Professor Miller, of

Cambridge, also deems the error in the. relation of the metre

to the quadrant of the meridian to be of no consequence. An
error which has also been discovered in the kilogramme is pro-

nounced by the same authorities to be of little importance in

a practical point of view.

It is difficult to make an exact comparison between the mfetre

and the inch or yard, arising from the fact that the mfetre is an

end measure of platinum, having its standard length at 32° F ,

while the yard is a line measure of bronze, standard at 02° F.

They cannot, therefore, be directly compared, and the dilatation

by temperature comes into effect, and requires to be ascertained

with the utmost accuracy. The means of comparison for
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Standards of length are different according to their being
line or end measures. In the former case, when, as in the

British yard, the standard length is contained between lines

drawn upon the bar, the comparator is necessarily optical,

which enables us to measure by- means of micrometer micro-

scopes the minute differences between different measures

traced from the same standard by mechanical means. But when
the standards are end measures, or contained between the ter-

minal planes of the bar, the comparison is necessarily made by
actual contact, the rotation of a mirror, or tilting of a delicate

level, being used as the means of indicating the minute differ-

ences. In standard measures of the latter kind, it is now
usual to make the terminal surfaces very small, and ground off

parallel to each other by means of cylindrical bearings near

each end of the bar. It is only by such means that parallelism

approaching to geometrical accuracy can be obtained. In both

kinds of comparison, a precision of the j^qto' P^^^ ^^ ^^ '"^''^

may be reached. The greatest difficulty in obtaining extreme

precision arises from the variability of temperature; and tbis

is greatly enhanced when the measures compared are of differ-

ent volume, and still more when of different metals. In com-

parisons of precision, it is therefore necessary, to insure a great

uniformity of temperature, to prevent as much as possible the

influence of the bodily heat of the observer upon the appar-

atus.

The System.—The Metric System is so called because the

base, or fundamental unit from which all the other units are

derived, is the Meter. The units of the different measures have

simple and definite relations, and the whole system is founded

upon the decimal scale. A unit of any measure being estab-

lished, the other denominations are derived by taking decimal

multiples and divisions of the unit. The multiples are named

by prefixes derived from the Greek,—deka, ten
; hedo, hundred,

etc.; those denoting divisions, from the Latin,—deci, tenth, etc.

The scale ;is<-e:i(Is and descends bv tens, the sainc :is (»iir or-
rp



560 THE PHILOSOPHY OF ARITHMETIC.

dinary scale of numeration and notation. Any quantity con-

sisting of several denominations is thus written and treated

like an integer and decimal, the decimal point separating the

unit and its divisions. Another merit of the system is that

the units are all correlated, being derived from the standard

unit or Meter.

The Unit of Length is the Meter. It equals 39.3Y inches,

which is in theory the ten-millionth part of a degree of latitude,

being a little longer than the yard, the present unit of length.

Another expression for its length which may be easily remem-

bered, is 3 feet, 3 inches, and 3 eighths of an inch. The Meter

is the unit from which all the other units are derived. It is

the basis, the fundamental unit, of the whole system. Ordi-

nary lengths are measured by the meter ; very small distances

by the millimeler (YyVir ^^ ^ meter), and long distances by the

kilometer (1000 meters). The five-cent piece, adopted in 1866,

is
gig^

of a meter or 2 centimeters in diameter. A decimeter is

about 4 inches
;
a millimeter, about 2V ^f ^^^ inch

;
a kilometer,

about 200 rods, or f of a mile.

The Unit of Surface, used in measuring land, is the Are,

which is a square decameter. It equals 3.9574 perches, or

0.0247 acre. The are, centiare, and hectare are the denomina-

tions principally used, as they are exact squares; the deciare

is not a square, but merely the tenth of an are, and the decare

is merely ten ares. The centiare is a square meter. A hect-

are is nearly 2^ acres
;
an acre is nearly 40 ares. Other sur-

faces, as cloth, lumber, paper, etc., are measured by the square
meter.

The Unit of Volume used in measuring wood, is the Stere,

which is a cubic meter. The stere, decistere, and decastere are

principally used. 3.6 steres very nearly equal a cord. Other

solid bodies, like stone, sand, gravel, etc., are measured by the

cubic meter and its divisions.

The Unit of Capacity is the Liter, which equals a cubic

decimeter, and contains G1.027 cubic inches, or 2.1135 pinta
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wine measure, or 1.816 piats dry measure. This measure is

used both for measuring liquids and dry subtauces. Liquids
are usually measured by the liter, and grain by the hectoliter,

which equals nearly 2 j bushels, or | of a barrel. 4 liters are

a little more than a gallon, and 35 liters nearly a bushel.

The Unit of Weight is the Gram. It is the weight of a

cubic centimeter of distilled water at the temperature of melt-

ing ice, and equals 15.432 Troy grains. It is used in weighing
letters, in mixing and compounding medicines, and in weigh-

ing all very light articles. The live-cent coin adopted in 1866,

weighs 5 grams. The kilogram, usually abbreviated into kilo,

is the ordinary unit of weight. It equals about 2i pounds

Avoirdupois. Meat, sugar, etc., are bought and sold by the

kilogram. In weighing heavy articles, two other weights, the

quintal (100 kilograms) and the tonneau (1000 kilograms) are

used. The U. S. Post-office receives 15 grams, though a little

over weight, as equivalent to an ounce Avoirdupois.
Its Adoption.—The Metric System was adopted in France

in 1795, but was tardily accepted by th^ people. Though it

was early made compulsory, it became necessary to relax the

law so as to permit the use of halves and quarters of the sev-

eral units. Since 1840, however, the metric measures have

been the only ones in common use in France
;
and the system

has found a very large acceptance elsewhere. It has been

adopted by Italy, Spain, Portugal, Greece, Belgium, Holland,

and partially by Denmark and Switzerland. Many of the

German states have also expressed their approval of the system,
and the half kilogram has been introduced into all the great

mercantile operations in Austria. In 1863, at the International

Statistical Congress held at Berlin, a resolution was passed

recommending the metric system as the most convenient for

international measures. A Commission of the Imperial Acad-

emy of Sciences in St. Petersburg has recommended that such

alterations be made in Russian weights and measures as would

put them in conformity with the French system.
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In England, the metric system has been extensively used

among scientific men for many years; and in 18G4 the Parlia-

ment passed an act legalizing its use throughout the British

Empire. In 1866, the Congress .of the United States author-

ized its use in this country ;
and to facilitate its introduction

directed that the new five-cent piece should weigh Jim grams
and be one-fiftieth of a meter in diameter. Owing to the com-

position of the alloy, it was found necessary to make its diam-

eter a little greater than one-fiftieth of a meter; 48.6 nickel

five-cent pieces, laid side by side, measure one meter. It was

also ordered that letters in post-offices should be weighed by
the gram, but this latter provision has not been carried out.

There is, however, a strong feeling among scientific men in

favor of the system ;
and the time is not very far distant when

it will be universally used in this country. And more than

this,—to the honor of France and the scientific men who sug-

gested and perfected it,
—the metric system is destined to be-

come the system of the civilized world.
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measures, 500
;
American measures,

504
;

of weight, 512
;

ancient En-

glish measures, 517 ;
American

system, 517
;
of value, .521

; origin,

521
;
of time, 541 ; origin, .541.

Measurement of arc of meridian, 493,

556.

Mechain, measurement of meridian,

493, .556.

Medial proportion, 323.

Mellis, John, 36, 37, 337.

Meter, 493, 559.

Method of naming numbers, 94
;
util-

ity of method, 97.

Metius, Adrian, 439, 449.

Metri3 system, 555
; disadvantages of

old system, 555 ; history of metric

system, 556
;
units of, 560 ; adoption,

561.

MQler, 558.

Mohammed ben Musa, 41.

Money, history of, 529; definition,

5.33
;
United States money, 533.

Monge, 556.

Morris, Gouverneur, 534.

Morris, Robert, 534.

Mouton, 500.

MungoPark, 122.

Muller, 29, 106, 107.

Multiplication is mie vexation, 38
;
as

found in Lilawati, 46, 47
; Ganesa,

48
;

Italian methods, 50, 51, 52
;

sluggard's rule for, 53
; Greek, 138

;

palpable, 157
; reasoning in, 180

;

discussion of, 221
; principles, 222

;

cases, 223 ; method, 224
; rule, 226.

Multiplication table, ignorance of, 53.

Napier, 38, 447, 448, 450, 451, 452
;

rods, 48, 160.

Neo-Pythagoreans, 29, 30.

New circulate fbrm, 481
; origin, 482 ;

meaning, 483
; value, 484.

Newton, definition of number, 72 ;

110
;

binomial theorem, 199
; 297,

298.

Nicomachus, 33.

Nonary scale, 123.

Norton, Richard, 446, 447.

Notation, or the writing of numbers,
101

;
relation to numeration, 102

;

relation to the base, 103
; by the

duodecimal scale, 128
; Greek, 135.

Number nine, properties of, 404
;

di-

visibility by, 392.

Number, the subject matter of arith-

metic, 67
;
definition of, 72 ;

classes

of, 76
; origin of, 67

;
of character? ,

104.
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Numbers expressed by letters of a

woia, 85.

Numeration, or the naming of num-

bers, 93
; by the duodecimal scale,

126; of decimals, 457.

Numerical ideas of the ancients, 81
;

of the Chinese, 86.

Objections to a decimal basis, 113.

Octary scale, 116, 12-3.

Oldcastle, Hugh, 38.

Origin of arithmetic, 21
; characters,

22, 105; cipher, 23; arithmetical

characters, 41
; number, 67

;
names

of numbers, 97; Arabic system of

notation, 104; arithmetical symbols,
108 ; Roman characters, 142

; mea-

sures of extension, 497 ; measures

of weight, 512
; measures of value,

521
;
measures of time, 541.

Orontius Fineus, 46, 53, 283, 284, 444.

Ortega, Juan de, 42, 283.

Other scales of numeration, 116, 120.

Oughtred, 39, 110, 112, 331, 448, 452,

454.

Pacioli, see Di Borgo.

Palpable arithmetic, 147
; notation,

155
; addition, 156

; subtraction,
156

; multiplication, 157
; division,

157.

Paper money, 526.

Pappus, 136.

Parenthesis, 111.

Partitive proportion, 321.

Partnership and barter, 337.

Pascal, inventor of arithmetical ma-

chine, 161.

Peacock, Dr., 39, 42, 55, 61, 147, 328,

446, 449, 4.50, 4.54.

Pell, Dr. John, 110.

Pelletier, .59, 283.

Percentage, nature of, 355
; quanti-

tieB, 356 ; cases, 357
; treatment.

3.58
; formulas, 3.59 ; applications,

360.

Perfect, imperfect, etc., numbers, 383.

Perkins, 281, 478.

Petrarch, 28.

PhUolaus, 85.

Picard, 500.

Pierce, 297, 298.

Pisa, Leonard of, see Bonacci.

Planudes, Maximus, 45,49, 52,54,61.

Plato, 13, 81, 82.

Playfair, 502.

Poinset, 373.

Polyglot numbers, 387.

Position, in the Lilawati, 334; in

Manoranjafia, 335
;

in Arabian

writers, 336
;

in Italian writers,

336.

Powers and roots, rule in lAlawati, 57;
Arabian methods, 58, 60

;
method

of earlier European mathematicians,
59.

Prime and composite numbers, 378.

Prinseps, 106.

Progressions, arithmetical, 341
; geo-

metrical, .345.

Proportion, nature of, 305
;

notation

of, 305
; kinds of, 307

; principles,

307
; demonstration, 308

; applica-
tion of simple, 310

; position of un-

known quantity, 311
; symbol for

unknown quantity, 312 ; method
of statement, 313

;
three terms

statement, 313
; cause and effect,

314
; inverse, 316

; distinctly arith-

metical, 317
; compound, 318 ;

principles, 319
; partitive, 321

;
ori-

gin, 321
; cases, 321

; method of

treatment, 322
; conjoined, 322 ;

method of treatment, 323
; medial,

323
; origin, 324 ; cases, 324 ;

method
of treatment, 324

; history, 326.

Ptolemy, 137.

Pyramidal numbers, 388.
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Pythagoras, 13, 24, 199, 297, 371;
classes of numbers, 82

; properties

of numbers, 81, 82.

Quantities, 492.

Quantity of magnitude, 489.

Quaternary scale, 122.

Quinary scale, 122.

Rabdologia, 160, 447, 4.51.

Radical sign. 111.

Ramus, Peter, 46, 56, 445.

Ratio, nature of, 294
;
method of, 295;

•'English method," "French

method," 295
;

reasons for old

method, 295
; origin of symbol,

298
;

French method inappropri-

ately named, 299.

Ray, Dr., 299.

Reasoning in arithmetic, 165
;
nature

of, 170
;
in fundamental operations,

177.

Recorde, Robert, 36, 39, 43, 53, 56, 57,

111, 283, 330, 337, 444.

Regiomontanus, 35, 56, 59, 444.

Rigaud, 109.

Risen, Adam, 36.

Ritchie, 109.

Biobinson, H. N., 315.

Roman arithmetic, 141
; characters,

origin and modification of, 140; com-

putations by pebbles, 155.

Rudolph, Christopher, 36, 110, 385,

Rule of Three, 326.

Sanskrit digits, 22
; origin of numer-

als, 99.

Saunderson, 159.

Scales of denominate numbers, 495.

Scheutz, calculating machine, 161,

162.

Schoner, John, 35.

Science of arithmetic, 13.

Senary scale, 123.

Septenary scale, 123.

Sheepshanks, 503.

Shepherd, 503.

Signs of addition and subtraction,
109

; sign of multiplication, 110
;

. of division, 110
;

of equality. 111
;

of ratio. 111, 298
;
of equal ratios,

112, 305
;
of inequality, 112.

Sluggard's rule for multiplication,

53.

Smith, H. J. S., 373.

Square root, analytic method, 270
;

synthetic method, 271.

Squaring numbers, analytic method,
263

; synthetic method, 264.

Stevinus, Simon, 37, 42, 56, 283, 337,

368, 444, 445, 446, 447, 448, 450.

Stifel, Michael, 36, 39, .56, 61, 88, 109,

110, 111, 418.

Substitution, 195.

Subtraction, mode of Planudes, 45

mode of Ramus, 46
; Greek, 138

palpable, 156
; reasoning in, 179

discussion of, 213
; cases, 213

principles, 214 ; methods, 215
; rule,

218.

Surface measure, 507.

Swan-pan, 158.

Sylvester, 440.

Symbols of number, 108
;

of opera-

tion, 109
;

of relation. 111
;

of in-

volution, 261
;
of evolution, 267.

Synthesis, 15, 16.

System of exponents, 110. j

Taaut or Thaut, 21.

Talleyrand, 556.

Tallies, 154.

Tartaglia, Nicolas, 37, 50, 52, 55, 282,

283, 284, 328, 329, 331, 333, 334,

336, 337, 366, 367, 419, 444.

Ternary scale, 122.

Thales, 33.
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Theon, 336.

Theory of numbers, 371.

Theuth, 81.

Thirtie daies hath September, etc.,

38.

Time, 68, 69, 70
;

measures of, 541,

.549.

Tonstall, Bishop, 42, 45, 56, 60.

Tooke, 534.

Transposition, 196.

Troughton, 505.

Troy weight, 518.

Unit, 15 ; basis of analysis, 185
;

of

measure, 491 ; standard units, 493.

United States.money, 533
; history of,

533, 534, 537.

Usury, origin and history, 365,

Utility of Arabic method, 102.

Van Schooten, E., 383, 384.

Vernier, method of ratio, 300.

Vicenary scale, 125.

Vieta, author of vinculum. 111.

Vinculum, origin of, 111.

Vossius, Gerard, 27.

Wallis, 56, 435, 444, 449, 452.

Webster, William, 40, 448, 452.

Whetstone of wit, 36, 111, 444.

Whewell, 167, 177, 179, 201, 210-

WUson's theorem, 381, 382.

Wingate's arithmetic, 453.

Witt, Richard, 446, 452.

Woepcke, modem view of the Intro-

duction of Arabic characters, 5i9,

31.

Wollaston, 502.

Wood, Prof., 325, 334.

Young, Dr., 502.

Young, J. R., 281.

Zero, origin of name, 23.



APPENDIX.

HENKLE'S NAMES OF PERIODS.

Millions (1), Billions (2), Trillions (3), Quadrillions (4), Quintillions (5),
SextiUions (6), Septillions (7), Octillions (8),Nonillions (9), Decillions (10),
Undecillious (11), Duodecillions (12), Tertio-decillions (13), Quarto-dccill-
ious (14), Quinto-decillions (15), Sexto-decillions (16), Octo-decillions (18),
Nono-decillions (19), Vigillions (20), Primo-vigillions (31), Secundo-vigill-
ions (22),Tertio-vig:illions (23), Quarto-vl,2:illions (24),Quinto-vigillions (25),

Sexto-vigillions (26), So.pto-vigillions (27), Octo-vigillions (28), Nono-vi-

gillious (29), Trigillions (30), Quadragillions (40), Quinquagillions, (50),

Sexagillions (60), Septuagillions (70), Octogillions (80), Nonagillions (90),
Centillions (100), Primo-centillions (101), Decinio-centillions(llO), Undecimo-
eentillions (111), Duodecimo-centillions (112), Tertio-decimo-centillions (113),

Quarto-decimo-centillions (114), Vigesimo-centillions (120), Primo-vigesimo-
centillious (121), Trigesimo-centillions (130), Quadragesimo-centillions (140),

Quinquagesimo-centillions (150), Sexagesimo-centillions (160), Septuagesi-
nio-centillions (170), Octogesimo-centillions (180), Nonagesimo-centillions

(190), Ducentillions (200), Trecentillions (300), Quadringentillions (400),

Quiugentillions (500), Sexcentillions (600), Septingentillions (700), Octin-

gentiilions (800), Nongentillions (900), MUlillions (1000), Centesimo-mill-
illions (1100), Ducentesimo-millillions (1200), Trecentesimo-millillions

(1300) , Quadringentesimo-millillions(1400) ,Quingentesimo-millillions (1500) ,

Sexcentesimo-millillions (1600), Septingentesimo-millillions (1700), Octin-

gentesimo-millillions (1800), Nongeutesimo-millillious (1900), Bi-millillions

(2000), Tri-millillions (3000), Quadri-millillions (4000), Quinqui-millillions

(5000), Sexi-millillions (6000) Septi-millillions (7000), Octi-millillions (8000),
Novi-millillions (9000), Deci-millillions (10,000), Undeci-millillions (11,000),
Duodeci-millil lions (12,000), Tredeci-millillions (13,000), Quatuordeci-mill-
illions (14,000), Quindeci-millillions (15,000), Sexdeci-millillions (16,000),

Septi-deci-millillions (17,000), Octi-deci-millillions (18.000), Novi-deci-mill-

illions (19,000),Vici-millillions (20,000), Semeli-vlci-miilillions (21,000), Bi-

vici-millillions (22,000), Tri-vici-millillions (23,000), Quadri-vici-millillions

(24,000), Quinqui-vici-millillions (25,000), Sexi-vici-millillions (26,000),

Septi-yici-millillions (27,000), Octi-vici-millillions (28,000), Novi-vici-millill-

ions (29,000), Trici-millillions (30,000), Quadragi-millillions (40,000), Quin-

quagi-millillions (.50,000), Sexagi-millillions (60,000), Septuagi-millillions

(70,000), Octogi-millillions (80,000), Nonagi-millillions (90,000), Centi-mill-

illions (100,000), Semeli-centi-millillions (101,000), Bi-centi-millillions (102,-

000), Dueenti-raillillious (200,000), Trecenti-millillions (300,000), Quadrin-

genti-millillions (400,000), Quinijenti-millillions (500,000), Sexcenti-millillions

(600.000), Septingeuti-millillions (700,000), Octingenti-millillious (800,000,

Nongenti-millillions (900,000), Milli-millillions (1,000,000).
It should be observed that words ending in o represent numbers to be

added, and those ending in i represent multipliers. When two words end in

i, the sura of the numbers indicated is to be talten as the multiplier. In each,
the last word indicates the number to be increased or multiplied.
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